Securing complete control of complex systems comprised of tens of thousands of interconnected nodes holds immense significance across various fields, spanning from cell biology and brain science to human-engineered systems. However, depending on specific functional requirements, it can be more practical and efficient to focus on a pre-defined subset of nodes for control, a concept known as target control. While some methods have been proposed to find the smallest driver node set for target control, they either rely on heuristic approaches based on k-walk theory, lacking a guarantee of optimal solutions, or they are overly complex and challenging to implement in real-world networks.
View Article and Find Full Text PDFRecent controllability analyses have demonstrated that driver nodes tend to be associated to genes related to important biological functions as well as human diseases. While researchers have focused on identifying critical nodes, intermittent nodes have received much less attention. Here, we propose a new efficient algorithm based on the Hamming distance for computing the importance of intermittent nodes using a Minimum Dominating Set (MDS)-based control model.
View Article and Find Full Text PDF