Publications by authors named "Wataru Otsu"

Article Synopsis
  • - VPS35, a key protein in the retromer complex that helps regulate endosomal trafficking, is genetically linked to Parkinson's disease and is associated with visual impairment in affected individuals.
  • - Research findings show that mouse retinas lacking VPS35 exhibit significant synapse loss, vision deficits, and progressive degeneration tied to the formation of Lewy body-like inclusions and aggregation of a protein called phospho-α-synuclein (P-αSyn).
  • - The study reveals that VPS35 interacts with another protein, HSC70, and a deficiency in VPS35 leads to the accumulation of aggregates in late endosomes, activating microglia which can be seen in live imaging as bright dots, marking the onset of pathology
View Article and Find Full Text PDF

A photoreceptor is a specialized neuron that is responsible for the conversion of light into an electrical signal. Photoreceptors are classified into rods and cones, and both photoreceptors possess light-sensing ciliary organelles called outer segments (OSs), anchored in the cells by a microtubule-based axoneme. The OS consists of a stack of disc membranes, which are abundant for the retinal phototransduction proteins such as rhodopsin.

View Article and Find Full Text PDF

Many glaucoma treatments focus on lowering intraocular pressure (IOP), with novel drugs continuing to be developed. One widely used model involves raising IOP by applying a laser to the trabecular iris angle (TIA) of cynomolgus monkeys to damage the trabecular meshwork. This model, however, presents challenges such as varying IOP values, potential trabecular meshwork damage, and risk of animal distress.

View Article and Find Full Text PDF

Background: Blue light exposure is known to induce reactive oxygen species (ROS) production and increased endoplasmic reticulum stress, leading to apoptosis of photoreceptors. Maqui berry (Aristotelia chilensis) is a fruit enriched in anthocyanins, known for beneficial biological activities such as antioxidation. In this study, we investigated the effects of Maqui berry extract (MBE) and its constituents on the subcellular damage induced by blue light irradiation in mouse retina-derived 661W cells.

View Article and Find Full Text PDF
Article Synopsis
  • - The primary cilium is a non-moving organelle important for cell signaling, and its defects are linked to a variety of diseases known as ciliopathies, making it a promising target for new treatments.
  • - This review explores potential therapeutic approaches by focusing on ciliary receptors, how cilia are formed (ciliogenesis), and the trafficking of proteins within the cilium.
  • - Key signaling pathways, like Aurora A kinase and the ubiquitin-proteasome system, are highlighted for their roles in regulating ciliogenesis, while advancements in treatment research using large animal models are also discussed.
View Article and Find Full Text PDF

The corneal epithelium is located at the outermost layer of the ocular surface and continuously exposed to environmental factors, such as ultraviolet (UV) radiation from sunlight. UV irradiation causes excessive production of reactive oxygen species (ROS) in cells, which results in oxidative damage to membrane-bound organelles such as mitochondria, eventually leading to cell death. Crocetin, a natural carotenoid found in plants, has various biological properties including antioxidant activity.

View Article and Find Full Text PDF

Neovascular glaucoma (NVG) is caused by the formation of new blood vessels in the angle, iris, and cornea in retinal ischemic disease, such as proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), which can reduce the visual acuity. However, the pathophysiological symptoms of NVG are still not well understood because there is no model for the formation of NVG in the angle, iris, and cornea. The aim of this study was to investigate the involvement of NVG during ischemic disease, in a murine model of retinal ischemia.

View Article and Find Full Text PDF

Non-exudative age-related macular degeneration (AMD) is an irreversibly progressive retinal degenerative disease characterized by dysfunction and loss of retinal pigment epithelium (RPE). It has been suggested that impaired phagocytosis of the RPE is involved in the progression of non-exudative AMD, but the mechanism is not fully clear. In this study, we investigated the effect of lipid droplet accumulation on RPE function.

View Article and Find Full Text PDF
Article Synopsis
  • * Lipid-rich drusen are characteristic features of dry AMD, and studying AMD mouse models helps researchers understand how drusen form and contribute to the disease.
  • * Research shows that mice lacking the CLIC4 protein in retinal pigment epithelium display key characteristics of dry AMD, suggesting that problems with lipid metabolism in these cells lead to drusen formation and disease progression.
View Article and Find Full Text PDF

Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases.

View Article and Find Full Text PDF

The cornea is directly exposed to cigarette smoke, and smoking is a risk factor for several corneal diseases including dry eye syndrome. Currently, heated tobacco products (HTPs) are widely used as substitutes for cigarette smoking around the world. In the present study, we investigated the molecular mechanism(s) leading to cellular injury induced by cigarette smoke extract (CSE) or HTPs.

View Article and Find Full Text PDF

Background: Age-related macular degeneration (AMD) is the principal cause of permanent blindness among elderly individuals worldwide. Chronic inflammation in the subretinal space is associated with a progression of exudative AMD. Progranulin (PGRN) is a growth factor secreted from myeloid cells and plays an important role in controlling the lysosomal function.

View Article and Find Full Text PDF

The corneal epithelium is continuously exposed to oxygen, light, and environmental substances. Excessive exposure to those stresses is thought to be a risk factor for eye diseases. Photokeratitis is damage to the corneal epithelium resulting in a painful eye condition caused by unprotected exposure to UV rays, usually from sunlight, and is often found in people who spend a long time outdoors.

View Article and Find Full Text PDF

Retinal vein occlusion (RVO) is a vascular disease that represents characteristic retinal hemorrhage and dilated retinal veins. Despite its clinical importance, its pathogenesis remains largely unknown because of limited opportunities to acquire human retinal samples. Therefore, an animal model that reproduces the clinical features of RVO patients is required for further investigation.

View Article and Find Full Text PDF

Objective: A retinal vein occlusion (RVO) is a relatively common retinal vascular disorder, especially in the elderly. Many experiments have been performed on patients with an RVO but performing any type of experiments and especially longitudinal experiments on humans is difficult, if not impossible, on ethical grounds. Therefore, we have created a retinal vein occlusion (RVO) model by laser irradiation of cynomolgus monkeys after intravenous injection of rose bengal.

View Article and Find Full Text PDF

Objective: This study was conducted to evaluate the effects of anti-vascular endothelial growth factor (VEGF) antibody (bevacizumab) on vascular leakage and fibrosis in a monkey choroidal neovascularization (CNV) model. The relationship between fibrotic tissue and subretinal hyper-reflective material (SHRM), in optical coherence tomography (OCT) images, was also investigated.

Methods: Experimental CNV was induced in male cynomolgus monkeys by laser photocoagulation.

View Article and Find Full Text PDF

TSPO2 (translocator protein 2) is a transmembrane protein specifically expressed in late erythroblasts and has been postulated to mediate intracellular redistribution of cholesterol. We identified as the causative gene for the HK (high-K) trait with immature red cell phenotypes in dogs and investigated the effects of the TSPO2 defects on erythropoiesis in HK dogs with the mutation and knockout () mouse models. Bone marrow-derived erythroblasts from HK dogs showed increased binucleated and apoptotic cells at various stages of maturation and shed large nuclei with incomplete condensation when cultured in the presence of erythropoietin, indicating impaired maturation and cytokinesis.

View Article and Find Full Text PDF

Exposure to blue light from light-emitting diodes (LEDs) is a source of damage for human eyes in today's modern life. Although it is well known that blue light can cause cellular damage and death, the molecular mechanism underlying this is still not fully understood. Here, we demonstrated that exposure to blue LED light increased lysosome levels and perinuclear cluster formation in 661W murine photoreceptor-derived cells.

View Article and Find Full Text PDF

Daily phagocytosis of shed photoreceptor outer segments (POS) by the retinal pigment epithelium (RPE) is required to sustain the visual function. Recent reports revealed that POS phagocytosis is progressed with LC3-associated manner. Patients with age-related macular degeneration (AMD) had impaired autophagic degradation in the RPE.

View Article and Find Full Text PDF

Primary cilium is a membrane-protruding sensory organelle, which is organized from a basal body in G/G phase cells. The resorption of primary cilia under specific growth factor stimuli is coupled to cell cycle re-entry and cell proliferation, and the proliferative function is vital for the organization of organs at an embryonic stage. In fact, abnormalities in ciliogenesis and/or cilium-derived signaling lead to malformation of various organs, such as the brain, eyes, nose, ear, heart, lung, liver, kidney, and bones.

View Article and Find Full Text PDF

Dysregulation in the extracellular matrix (ECM) microenvironment surrounding the retinal pigment epithelium (RPE) has been implicated in the etiology of proliferative vitreoretinopathy and age-related macular degeneration. The regulation of ECM remodeling by RPE cells is not well understood. We show that membrane-type matrix metalloproteinase 14 (MMP14) is central to ECM degradation at the focal adhesions in human ARPE19 cells.

View Article and Find Full Text PDF

Peripherin 2 (PRPH2) is a tetraspanin protein concentrated in the light-sensing cilium (called the outer segment) of the vertebrate photoreceptor. The mechanism underlying the ciliary targeting of PRPH2 and the etiology of cone dystrophy caused by PRPH2 mutations remain elusive. Here we show that the late endosome (LE) is the main waystation that critically sorts newly synthesized PRPH2 to the cilium.

View Article and Find Full Text PDF

The primary cilium is a non-motile sensory organelle whose assembly and disassembly are closely associated with cell cycle progression. The primary cilium is elongated from the basal body in quiescent cells and is resorbed as the cells re-enter the cell cycle. Dysregulation of ciliary dynamics has been linked with ciliopathies and other human diseases.

View Article and Find Full Text PDF

The primary cilium is a plasma membrane-protruding sensory organelle that undergoes regulated assembly and resorption. While the assembly process has been studied extensively, the cellular machinery that governs ciliary resorption is less well understood. Previous studies showed that the ciliary pocket membrane is an actin-rich, endocytosis-active periciliary subdomain.

View Article and Find Full Text PDF