Although the neuronal protein α-synuclein (α-syn) is thought to play a central role in the pathogenesis of Parkinson's disease (PD), its physiological function remains unknown. It is known that α-syn is also abundantly expressed in erythrocytes. However, its role in erythrocytes is also unknown.
View Article and Find Full Text PDFIt is widely believed that enzymatic activities in ectothermic organisms adapt to environmental temperatures. However, to date, no study has thoroughly compared multiple thermodynamic enzymatic characteristics across species living in dramatically different environments. To start to address this gap, we compared the characteristics of lactate dehydrogenase (LDH) purified from the muscles from slime flounder Microstomus achne white muscle and bovine skeletal muscle (bM) and heart.
View Article and Find Full Text PDFLactate dehydrogenase (LDH) is a glycolytic enzyme that catalyzes the final step of glycolysis and produces NAD. In somatic cells, LDH forms homotetramers and heterotetramers that are encoded by two different genes: LDHA (skeletal muscle type, M) and LDHB (heart type, H). Analysis of LDH isozymes is important for understanding the physiological role of homotetramers and heterotetramers and for optimizing inhibition of their enzymatic activity as it may result in distinct effects.
View Article and Find Full Text PDFTwo key questions remain unanswered in the erythropoiesis field: Why and how do erythroblasts enucleate in mammalian species? Recent studies have unveiled the roles of various molecules, cytoskeletal proteins, motor proteins, vesicle transport, signaling pathways, lipid rafts and actomyosin ring contraction in the enucleation process. However, few reports provide insights into the fitness benefit for mammalian species of having anucleate erythrocytes. Herein, we discuss the biological significance of enucleation of human erythroblasts based on our recent results and on evolutionary considerations related to the biology of hemoglobin and the comparative biochemistry of erythrocyte membrane cytoskeletal proteins, such as protein 4.
View Article and Find Full Text PDFHydroxychloroquine (HCQ) is a widely used drug in the treatment of autoimmune diseases, such as arthritis and systemic lupus erythematosus. It has also been prescribed for the treatment of malaria owing to its lower toxicity compared to its closely related compound chloroquine (CQ). However, the mechanisms of action of HCQ in erythrocytes (which bind preferentially this drug) have not been documented and the reasons underlying the lower side effects of HCQ compared to CQ remain unclear.
View Article and Find Full Text PDFMammalian erythroblasts undergo enucleation through a process thought to be similar to cytokinesis. Microtubule-organizing centers (MTOCs) mediate organization of the mitotic spindle apparatus that separates the chromosomes during mitosis and are known to be crucial for proper cytokinesis. However, the role of MTOCs in erythroblast enucleation remains unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2014
Membrane skeletal protein 4.1R(80) plays a key role in regulation of erythrocyte plasticity. Protein 4.
View Article and Find Full Text PDFCalmodulin (CaM) binds to the FERM domain of 80 kDa erythrocyte protein 4.1R (R30) independently of Ca(2+) but, paradoxically, regulates R30 binding to transmembrane proteins in a Ca(2+)-dependent manner. We have previously mapped a Ca(2+)-independent CaM-binding site, pep11 (A(264)KKLWKVCVEHHTFFR), in 4.
View Article and Find Full Text PDFIn this study, we have investigated the specific binding proteins of Zinc-L-carnosine (Polaprezinc) using Polaprezinc-affinity column chromatography in vitro. A protein having a 70-kDa molecular mass was eluted by the linear gradient of 0-1.0 mM Polaprezinc from the affinity column and the protein was identified as the molecular chaperone HSP70 by immunoblotting.
View Article and Find Full Text PDFProtein 4.1G (4.1G) is a widely expressed member of the protein 4.
View Article and Find Full Text PDFNHE1 (Na(+)/H(+) exchanger isoform 1) has been reported to be hyperactive in 4.1R-null erythrocytes [Rivera, De Franceschi, Peters, Gascard, Mohandas and Brugnara (2006) Am. J.
View Article and Find Full Text PDFIn this study, we describe a novel application for light scattering, a method widely used for separation of molecules in solution based on their size. We demonstrate that light scattering analysis can monitor the change in particle size of protein 4.1R prior to and after binding to red blood cell inside-out-vesicles in solution.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2012
Although the 3D structure of the Ca(2+)-bound CaM (Ca(2+)/CaM) complex with the antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7), has been resolved, the dynamic changes in Ca(2+)/CaM structure upon interaction with W-7 are still unknown. We investigated time- and temperature-dependent dynamic changes in Ca(2+)/CaM interaction with W-7 in physiological conditions using one- and two-dimensional Fourier-transformed infrared spectroscopy (2D-IR). We observed changes in the α-helix secondary structure of Ca(2+)/CaM when complexed with W-7 at a molar ratio of 1:2, but not at higher molar ratios (between 1:2 and 1:5).
View Article and Find Full Text PDFMammalian erythroblasts undergo enucleation, a process thought to be similar to cytokinesis. Although an assemblage of actin, non-muscle myosin II, and several other proteins is crucial for proper cytokinesis, the role of non-muscle myosin II in enucleation remains unclear. In this study, we investigated the effect of various cell-division inhibitors on cytokinesis and enucleation.
View Article and Find Full Text PDFMembrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.
View Article and Find Full Text PDFIn erythrocytes, 4.1R80 (80 kDa isoform of protein 4.1R) binds to the cytoplasmic tail of the transmembrane proteins band 3 and GPC (glycophorin C), and to the membrane-associated protein p55 through the N- (N-terminal), α- (α-helix-rich) and C- (C-terminal) lobes of R30 [N-terminal 30 kDa FERM (4.
View Article and Find Full Text PDFProtein 4.1R (4.1R) has been identified as the major component of the human erythrocyte membrane skeleton.
View Article and Find Full Text PDFMembrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.
View Article and Find Full Text PDFIn mice implanted with an osmotic pump filled with the superantigen (SAG) staphylococcal enterotoxin A (SEA), the Vβ3(+)CD4(+) T cells exhibited a high level of expansion whereas the Vβ11(+)CD4(+) T cells exhibited a mild level of expansion. In contrast, in mice implanted with an osmotic pump filled with SE-like type P (SElP, 78.1% homologous with SEA), the Vβ11(+)CD4(+) T cells exhibited a high level of expansion while the Vβ3(+)CD4(+) T cells exhibited a low level of expansion, suggesting that the level of the SAG-induced response is determined by the affinities between the TCR Vβ molecules and SAG.
View Article and Find Full Text PDFHow human erythroblasts enucleate remains obscure, and some investigators suspect the effect of mechanical forces on enucleation in vitro. We determined the dynamics of the enucleation process of highly purified human erythroblasts and whether enucleation can occur without external mechanical forces. Highly purified human CD34(+) cells were cultured in liquid phase with interleukin-3, stem cell factor and erythropoietin (EPO) for 7 days and the generated erythroblasts were replaced in the same medium with EPO alone.
View Article and Find Full Text PDFTwo major isoforms of protein 4.1R, a 135 kDa isoform (4.1R(135)) and an 80 kDa isoform (4.
View Article and Find Full Text PDFPlasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P.
View Article and Find Full Text PDF