A flat distribution of the minimum magnetic field (flat-Bmin) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical Bmin. To form a flat-Bmin structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-Bmin structure even when the coil currents are changed for adjustment.
View Article and Find Full Text PDFSingle-turn extraction from the Japan Atomic Energy Agency AVF cyclotron with a K number of 110 using a flat-top (FT) acceleration system has been achieved to reduce the energy spread of an ion beam for microbeam formation with energy up to hundreds of MeV and to increase extraction efficiency from the cyclotron. In order to generate a FT waveform voltage using the fifth-harmonic frequency on a dee electrode, a FT resonator was designed using MAFIA code to achieve downsizing and low power consumption. The FT resonator, coupled to the main resonator through a coupling capacitor, covered the full range of the fifth harmonic frequency from 55 to 110 MHz.
View Article and Find Full Text PDFIon optical analysis was made for a new focusing high-energy heavy ion microbeam system connected to the AVF cyclotron (K=110) at the accelerator facility, TIARA of JAEA Takasaki. The focusing performance of the microbeam system was estimated from both the calculation up to third-order term using TRANSPORT code and the measurement of beam resolution with the secondary electron imaging. As a result, a minimum beam size was evaluated at 0.
View Article and Find Full Text PDF