Publications by authors named "Wassink G"

The optimal rate of rewarming after therapeutic hypothermia is unclear. Slow rewarming may reduce cardiovascular instability and rebound seizures, but there is little controlled evidence to support this. The present study aimed to determine whether slow rewarming can improve neuroprotection after 72 h of hypothermia.

View Article and Find Full Text PDF
Article Synopsis
  • Perinatal hypoxia-ischaemia in extremely preterm infants leads to long-term neurodevelopmental issues, and while insulin-like growth factor-1 (IGF-1) can help with acute brain injuries, its effects on chronic brain damage are not well understood.
  • In a study with preterm-equivalent fetal sheep, subjects that underwent asphyxia demonstrated significant brain damage, including loss of white matter and inflammation.
  • However, prolonged treatment with IGF-1 after asphyxia improved white matter recovery and reduced inflammation, suggesting it may enhance brain maturation in preterm infants affected by severe asphyxia.
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the best method for rewarming infants after therapeutic hypothermia to minimize white matter injury following cerebral ischemia.
  • Near-term fetal sheep were subjected to either a sham occlusion or cerebral ischemia, then placed in hypothermic conditions for 72 hours, followed by either fast or slow rewarming methods.
  • Results showed that the rate of rewarming (fast vs. slow) did not significantly affect white matter protection, indicating that both methods are equally effective after hypothermia in this model.
View Article and Find Full Text PDF

Brain maturity and many clinical treatments such as therapeutic hypothermia (TH) can significantly influence the morphology of neonatal EEG seizures after hypoxia-ischemia (HI), and so there is a need for generalized automatic seizure identification. This study validates efficacy of advanced deep-learning pattern classifiers based on a convolutional neural network (CNN) for seizure detection after HI in fetal sheep and determines the effects of maturation and brain cooling on their accuracy. The cohorts included HI-normothermia term ( = 7), HI-hypothermia term ( = 14), sham-normothermia term ( = 5), and HI-normothermia preterm ( = 14) groups, with a total of >17,300 h of recordings.

View Article and Find Full Text PDF

Background And Purpose: There is growing evidence that infants with mild hypoxic-ischemic (HI) encephalopathy have increased risk of brain injury and adverse neurodevelopmental outcomes. Currently, there is no approved treatment for these infants. It was previously shown that blocking connexin 43 hemichannels is neuroprotective in models of moderate to severe HI injury.

View Article and Find Full Text PDF

Maternal magnesium sulphate (MgSO ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.

View Article and Find Full Text PDF

Therapeutic hypothermia significantly improves outcomes after neonatal hypoxic-ischemic (HI) encephalopathy but is only partially protective. There is evidence that cortical inhibitory interneuron circuits are particularly vulnerable to HI and that loss of interneurons may be an important contributor to long-term neurological dysfunction in these infants. In the present study, we examined the hypothesis that the duration of hypothermia has differential effects on interneuron survival after HI.

View Article and Find Full Text PDF

Objective: Deceleration area (DA) and capacity (DC) of the fetal heart rate can help predict risk of intrapartum fetal compromise. However, their predictive value in higher risk pregnancies is unclear. We investigated whether they can predict the onset of hypotension during brief hypoxaemia repeated at a rate consistent with early labour in fetal sheep with pre-existing hypoxaemia.

View Article and Find Full Text PDF

Exposure to hypoxic-ischaemia (HI) is consistently followed by a delayed fall in cerebral perfusion. In preterm fetal sheep this is associated with impaired cerebral oxygenation, consistent with mismatch between perfusion and metabolism. In the present study we tested the hypothesis that alpha-adrenergic inhibition after HI would improve cerebral perfusion, and so attenuate mismatch and reduce neural injury.

View Article and Find Full Text PDF

Aims: In this quality improvement project, a care pathway for patients considered for atrial fibrillation (AF) ablation was optimized with the goals to improve the patient journey and simultaneously integrate prospective data collection into the clinical process.

Methods And Results: The Lean Six Sigma approach was used to map the pre-existing process, identify constraints, and formulate countermeasures. The percentage of patients going through the full pre-ablation preparation that eventually underwent AF ablation, number of hospital visits and consultations, pathway compliance, and completeness of scientific data were measured before and after pathway optimization.

View Article and Find Full Text PDF

Perinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over hours to days, and involves complex interactions between the endogenous protective and pathological processes. Understanding the timing of evolution of injury is vital to guide treatment.

View Article and Find Full Text PDF

Background: Therapeutic hypothermia significantly improves outcomes after moderate-severe hypoxic-ischemic encephalopathy (HIE), but it is partially effective. Although hypothermia is consistently associated with reduced microgliosis, it is still unclear whether it normalizes microglial morphology and phenotype.

Methods: Near-term fetal sheep (n = 24) were randomized to sham control, ischemia-normothermia, or ischemia-hypothermia.

View Article and Find Full Text PDF

Therapeutic hypothermia (TH) is now a standard treatment for infants with moderate-to-severe neonatal encephalopathy (NE), and improves brain damage on neuroimaging and neurodevelopmental outcomes. Critically, for effective neuroprotection, hypothermia should be started within 6 h from birth. There is compelling evidence to suggest that a proportion of infants with mild NE have material risk of developing brain damage and poor outcomes.

View Article and Find Full Text PDF

Therapeutic hypothermia for hypoxic-ischaemic encephalopathy provides partial white matter protection. Recombinant erythropoietin reduces demyelination after hypoxia-ischaemia, but it is unclear whether adjunct erythropoietin treatment can further improve outcomes after therapeutic hypothermia. Term-equivalent fetal sheep received sham-ischaemia ( = 9) or cerebral ischaemia for 30 min (ischaemia-vehicle,  = 8), followed by intravenous infusion of recombinant erythropoietin (ischaemia-Epo,  = 8; 5000 IU/kg bolus dose, then 833.

View Article and Find Full Text PDF

There is increasing evidence that infants with mild neonatal encephalopathy (NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants need to be diagnosed within 6 hours of birth, corresponding with the window of opportunity for treatment of moderate to severe NE, compared to the retrospective grading over 2 to 3 days, typically with imaging and formal electroencephalographic assessment in the pre-hypothermia era. This shift in diagnosis may have increased the apparent prevalence of brain damage and poor neurological outcomes seen in infants with mild NE in the era of hypothermia.

View Article and Find Full Text PDF

Key Points: We have previously shown that high-dose constant infusion of recombinant human erythropoietin (rEPO) from 30 min to 72 h after asphyxia in preterm fetal sheep reduced histological injury and improved electrophysiological recovery. This study shows that a high-dose infusion of rEPO from 6 to 72 h after asphyxia did not improve EEG recovery, oligodendrocyte and neuronal survival at 1 week post-asphyxia. Of concern, intermittent rEPO boluses started 6 h after asphyxia were associated with impaired EEG recovery and bilateral cystic injury of temporal lobe intragyral white matter.

View Article and Find Full Text PDF

Progressive fetal infection/inflammation is strongly associated with neural injury after preterm birth. We aimed to test the hypotheses that progressively developing fetal inflammation leads to neuroinflammation and impaired white matter development and that the histopathological changes can be detected using high-field diffusion tensor magnetic resonance imaging (MRI). Chronically instrumented preterm fetal sheep at 0.

View Article and Find Full Text PDF

There is increasing evidence that administration of many types of stem cells, including human amnion epithelial cells (hAECs), can reduce hypoxic-ischemic injury, including in the perinatal brain. However, the therapeutic window for single dose treatment is not known. We compared the effects of early and delayed intracerebroventricular administration of hAECs in fetal sheep at 0.

View Article and Find Full Text PDF

Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets.

View Article and Find Full Text PDF

With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.

View Article and Find Full Text PDF

High-dose human recombinant erythropoietin (rEPO) is a promising potential neuroprotective treatment in preterm and full-term neonates with hypoxic-ischemic encephalopathy (HIE). There are limited data on the pharmacokinetics of high-dose rEPO in neonates. We examined the effects of body weight, gestation age, global asphyxia, cerebral ischemia, hypothermia and exogenous rEPO on the pharmacokinetics of high-dose rEPO in fetal sheep.

View Article and Find Full Text PDF

Background: Increased circulating levels of tumor necrosis factor (TNF) are associated with greater risk of impaired neurodevelopment after preterm birth. In this study, we tested the hypothesis that systemic TNF inhibition, using the soluble TNF receptor Etanercept, would attenuate neuroinflammation in preterm fetal sheep exposed to lipopolysaccharide (LPS).

Methods: Chronically instrumented preterm fetal sheep at 0.

View Article and Find Full Text PDF

Activation of Toll-like receptors (TLRs) after hypoxic-ischemic brain injury can exacerbate injury but also alleviate cell loss, as recently demonstrated with the TLR7 agonist Gardiquimod (GDQ). However, TLR agonists also modulate vascular function and neuronal excitability. Thus, we examined the effects of TLR7 activation with GDQ on cardiovascular function and seizures after asphyxia in preterm fetal sheep at 0.

View Article and Find Full Text PDF

Key Points: Recombinant human erythropoietin (rEpo) is neuroprotective in immature animals, but it is unclear whether the combination of high-dose rEpo therapy with therapeutic hypothermia can further improve outcomes. Hypothermia and rEpo independently improved neuronal survival, with greater improvement with hypothermia, and similarly reduced numbers of caspase-3 positive cells and reactive microglia after 7 days recovery. Hypothermia, but not rEpo, was associated with markedly improved EEG power, whereas both interventions improved recovery of EEG frequency.

View Article and Find Full Text PDF

It is widely believed that rewarming slowly after therapeutic hypothermia for hypoxic-ischemic (HI) encephalopathy can improve outcomes, but its impact on white matter injury after HI is unclear. Fetal sheep (0.85 gestation) received 30 min ischemia-normothermia (n = 8), or hypothermia from 3-48 h with rapid spontaneous rewarming over 1 h (ischemia-48 h hypothermia, n = 8), or 48 h with slow rewarming over 24 h (ischemia-slow rewarming, n = 7) or 72 h with rapid rewarming (ischemia-72 h hypothermia, n = 8).

View Article and Find Full Text PDF