This review highlights the limitations faced by conventional wastewater treatment plants (WWTPs) in effectively removing contaminants of emerging concern (CECs), heavy metals (HMs), and Escherichia coli (E. coli). This emphasises the limitations of current treatment methods and advocates for innovative approaches to enhance the removal efficiency.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
April 2023
This paper evaluates diatom biomass as a biosorbent for removing Cr, Cd, and PO ions from water. The diatom was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM-EDS) for its crystallinity, functional groups, and morphology. A batch sorption study was conducted to evaluate the parameters influencing Cr, Cd, and PO ions adsorption, and the mechanisms were explored.
View Article and Find Full Text PDFThis work reports the synthesis of 3-bromo-benzimidazolone using melt condensation, its polymerization and functionalization on silica which was extracted from diatomaceous earth in our previous work. The synthesized compounds were characterized using FTIR, NMR, SEM-EDS and TEM. The FTIR and NMR spectra of the synthesized benzimidazolones showed the compounds to have several functional groups: A band due to Si-O-C at 1085.
View Article and Find Full Text PDFAn innovative and sustainable approach to integrating modified Ag-MgO-nanohydroxyapatite on a nanofibrous cellulose template (CNF-AgMgOnHaP) as a multifunctional adsorbent via a hydrothermal bioreduction route using peel extract was developed and examined. The surface morphology and mineralogical properties of CNF-AgMgOnHaP by UV-vis spectroscopy, SEM-EDS, XRD, FTIR, TEM, and BET techniques are reported. Batch fluoride sorption studies and its disinfection potential against common bacteria in surface water were evaluated.
View Article and Find Full Text PDFThis paper presents the potential application of macadamia nut shells (MNS) in the bio-sorption of fluoride and its antimicrobial potency against common pathogens encountered in surface water resources. The efficiency of MNS in the sorption of fluoride was determined using batch mode experiments, while the antimicrobial potency was investigated using the well disc diffusion assay method. The maximum fluoride sorption capacity of 1.
View Article and Find Full Text PDFWater is regarded as an important natural resource to sustain life, and its purification is an important criterion that determines its quality and usefulness. In this study, the incorporation of Fe oxide onto a phenylenediamine (pPD) polymer matrix through chemical co-polymerization was prepared, and its arsenite and fluoride removal potentials at optimal conditions from aqueous solution were evaluated. The morphology and structural analysis of the synthesized Fe-doped pPD (Fe-pPD) were comparatively evaluated using the FT-IR, SEM, EDS, and XRD techniques.
View Article and Find Full Text PDFThe severity of oil pollution, brought about by improper management, increases daily with an increase in the exploration and usage of oil, especially with an increase in industrialization. Conventional oil treatment methods are either expensive or time consuming, hence the need for new technologies. The aim of this research is to synthesize polypyrrole-modified silica for the treatment of oily wastewater.
View Article and Find Full Text PDFSome antibiotics have lost their efficacy over common infections and this has led to the search for new antibiotics and chemically altering existing ones for a better control of infectious diseases. In the present study, Pyrenacantha grandiflora tubers extracts were conjugated with ampicillin, penicillin, vancomycin and silver nanoparticles and their antimicrobial activity was evaluated against Escherichia coli, Staphylococcus aureus and Klebsiella Pneumoniae. The reactions were confirmed by formation of new functional groups that were identified by Fourier transmission infrared spectroscopy (FTIR).
View Article and Find Full Text PDF