Publications by authors named "Wasilewski Z"

Fast and accurate detection of light in the near-infrared (NIR) spectral range plays a crucial role in modern society, from alleviating speed and capacity bottlenecks in optical communications to enhancing the control and safety of autonomous vehicles through NIR imaging systems. Several technological platforms are currently under investigation to improve NIR photodetection, aiming to surpass the performance of established III-V semiconductor p-i-n (PIN) junction technology. These platforms include-grown inorganic nanocrystals (NCs) and nanowire arrays, as well as hybrid organic-inorganic materials such as graphene-perovskite heterostructures.

View Article and Find Full Text PDF

We have created a spatially homogeneous polariton condensate in thermal equilibrium, up to very high condensate fraction. Under these conditions, we have measured the coherence as a function of momentum and determined the total coherent fraction of this boson system from very low density up to density well above the condensation transition. These measurements reveal a consistent power law for the coherent fraction as a function of the total density over nearly three orders of its magnitude.

View Article and Find Full Text PDF

Indium arsenide (InAs) quantum dots (QDs) grown by molecular beam epitaxy (EBM) on gallium arsenide (GaAs) substrates have exhibited quantized charge-trapping characteristics. An electric charge can be injected in a single QD by a gold-coated AFM nano-probe placed directly on it using a conductive-mode atomic force microscope (C-AFM). The results revealed separate current-voltage (-) curves during consecutive measurements, where the turn-on voltages measured at the subsequent voltage sweeps are incrementally lower than that at the initial sweep.

View Article and Find Full Text PDF

Reversible lasing performance degradation is investigated on an uncoated actively- biased GaAs/AlGaAs mid-infrared quantum cascade laser (MIR-QCL) facet. The surface temperature rises (ΔT) on the MIR QCL are characterized before and after the device undergoes an accelerated aging burn-in test, followed by hydrogen plasma treatment. The data is visualized by spatially resolved time-domain thermoreflectance (SR-TDTR) microscopy.

View Article and Find Full Text PDF

The realization of a semiconductor near-unity absorber in the infrared will provide new capabilities to transform applications in sensing, health, imaging, and quantum information science, especially where portability is required. Typically, commercially available portable single-photon detectors in the infrared are made from bulk semiconductors and have efficiencies well below unity. Here, we design a novel semiconductor nanowire metamaterial, and show that by carefully arranging an InGaAs nanowire array and by controlling their shape, we demonstrate near-unity absorption efficiency at room temperature.

View Article and Find Full Text PDF

We correct three typographical errors in our published paper [Opt. Express26, 9194 (2018)10.1364/OE.

View Article and Find Full Text PDF

The harmonic oscillator is a foundational concept in both theoretical and experimental quantum mechanics. Here, we demonstrate harmonic oscillators in a semiconductor platform by faithfully implementing continuously graded alloy semiconductor quantum wells. Unlike current technology, this technique avoids interfaces that can hamper the system and allows for the production of multiwell stacks several micrometers thick.

View Article and Find Full Text PDF

This work presents a six-level scheme terahertz (THz) quantum cascade laser (QCL) design in which the resonant-phonon (RP) and the scattering-assisted (SA) injection/extraction are combined within a single AlGaAs/GaAs based structure. By utilizing extra excited states for hybrid extraction/injection channels, this design minimizes the appearance of an intermediate negative differential resistance (NDR) before the lasing threshold. The final negative differential resistance is observed up to 260K and a high characteristic temperature of 259 K is measured.

View Article and Find Full Text PDF

A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/AlGaAs material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm at 50K) of GaAs/AlGaAs material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally.

View Article and Find Full Text PDF

The resistively detected nuclear magnetic resonance (RDNMR) performed on a two-dimensional electron gas is known to exhibit a peculiar 'dispersive' line shape at some filling factors, especially around ν = 1. Here, we study in detail the inversion of the dispersive line shape as a function of the filling factor from ν = 1 to 2/3. The RDNMR spectra show a new characteristic W line shape in the longitudinal resistance, whereas dispersive lines detected in the Hall resistance remain unchanged.

View Article and Find Full Text PDF

The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly.

View Article and Find Full Text PDF

We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure.

View Article and Find Full Text PDF

The impacts of side exposed side strips (for high order modes suppression) and ridge width on terahertz (THz) quantum cascade laser (QCL) performance are investigated through numerical modeling and verified experimentally. Our results show that shrinking ridge width of THz QCLs with metal-metal waveguides leads to a substantial degradation of device performance due to higher optical loss resulting from the side-exposed strips in the highly-doped top contact layer. Nevertheless, the side-exposed strips facilitate single mode operation by strongly suppressing higher-order modes.

View Article and Find Full Text PDF

We measured the lattice and subband electronic temperatures of terahertz quantum cascade devices based on the optical phonon-scattering assisted active region scheme. While the electronic temperature of the injector state (j = 4) significantly increases by ΔT = T(e)(4) - T(L) ~40 K, in analogy with the reported values in resonant phonon scheme (ΔT ~70-110 K), both the laser levels (j = 2,3) remain much colder with respect to the latter (by a factor of 3-5) and share the same electronic temperature of the ground level (j = 1). The electronic population ratio n(2)/n(1) shows that the optical phonon scattering efficiently depopulates the lower laser level (j = 2) up to an electronic temperature T(e) ~180 K.

View Article and Find Full Text PDF

Spin qubits based on interacting spins in double quantum dots have been demonstrated successfully. Readout of the qubit state involves a conversion of spin to charge information, which is universally achieved by taking advantage of a spin blockade phenomenon resulting from Pauli's exclusion principle. The archetypal spin blockade transport signature in double quantum dots takes the form of a rectified current.

View Article and Find Full Text PDF

Qubits based on the singlet (S) and the triplet (T(0), T(+)) states in double quantum dots have been demonstrated in separate experiments. It has been recently proposed theoretically that under certain conditions a quantum interference could occur from the interplay between these two qubit species. Here we report experiments and modeling that confirm these theoretical predictions and identify the conditions under which this interference occurs.

View Article and Find Full Text PDF

A new temperature performance record of 199.5 K for terahertz quantum cascade lasers is achieved by optimizing the lasing transition oscillator strength of the resonant phonon based three-well design. The optimum oscillator strength of 0.

View Article and Find Full Text PDF

We demonstrate InGaAs mid-infrared quantum well infrared photodetectors (MIR PV-QWIPs) that enable cost-effective mature GaAs-based detection and imaging technologies, with exceptional material uniformity, reproducibility, and yield, over a large area, with high spectral selectivity, innate polarization sensitivity, radiation hardness, high detectivity, and high speed operation at TEC temperatures without bias.

View Article and Find Full Text PDF

The design and fabrication of a high power THz quantum cascade laser (QCL), with electrically controllable transverse mode is presented. The switching of the beam pattern results in dynamic beam switching using a symmetric side current injection scheme. The angular-resolved L-I curves measurements, near-field and far-field patterns and angular-resolved lasing spectra are presented.

View Article and Find Full Text PDF

In this study, we report the unequivocal demonstration of midinfrared mode-locked pulses from quantum cascade lasers. The train of short pulses was generated by actively modulating the current and hence the gain of an edge-emitting quantum cascade laser (QCL). Pulses with duration of about 3 ps at full-width-at-half-maxima and energy of 0.

View Article and Find Full Text PDF

A GaAs/AlGaAs detector is demonstrated showing multiple detection capabilities. This detector exhibits a broad spectral response in the 200-870 nm (ultraviolet-visible) range for forward bias and in the 590-870 nm (visible) range for reverse bias. In the mid-IR region, two peaks at 5 and 8.

View Article and Find Full Text PDF

Nanostructures made of semiconductors, such as quantum wells and quantum dots (QD), are well known, and some have been incorporated in practical devices. Here we focus on novel structures made of QDs and related devices for terahertz (THz) generation. Their potential advantages, such as low threshold current density, high characteristic temperature, increased differential gain, etc, make QDs promising candidates for light emitting applications in the THz region.

View Article and Find Full Text PDF

We present here a case of ectopic cervical pregnancy terminated in the birth of a live 1800 g infant, whose further development takes normal course. Wrong evaluation of the place of the developing pregnancy resulted in its growth up to 34th week. Finally, the placement of pregnancy was established after delivering the woman with a caesarean section, on the basis of macro and microscopic evaluation of the removed uterus.

View Article and Find Full Text PDF

Performing optical spectroscopy of highly homogeneous quantum dot arrays in ultrahigh magnetic fields, an unprecedently well resolved Fock-Darwin spectrum is observed. The existence of up to four degenerate electronic shells is demonstrated where the magnetic field lifts the initial degeneracies, which reappear when levels with different angular momenta come into resonance. The resulting level shifting and crossing pattern also show evidence of many-body effects such as the mixing of configurations and exciton condensation at the resonances.

View Article and Find Full Text PDF