Living elephants produce seismic waves during vocalizations and locomotion that are potentially detectable at large distances. In the Mesozoic world, seismic waves were probably a very relevant source of information about the behavior of large dinosaurs. In this work, we study the relationship between foot shape and the directivity pattern of seismic waves generated during locomotion.
View Article and Find Full Text PDFThe unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria.
View Article and Find Full Text PDFAlthough the growth and development of tissues and organs of extinct species cannot be directly observed, their fossils can record and preserve evidence of these mechanisms. It is generally accepted that bone architecture is the result of genetically based biomechanical constraints, but what about osteoderms? In this article, the influence of physical constraints on cranial osteoderms growth is assessed. Comparisons among lepidosaurs, synapsids, and archosaurs are performed; according to these analyses, lepidosaur osteoderms growth is predicted to be less energy demanding than that of synapsids and archosaurs.
View Article and Find Full Text PDFThe importance of the centre of percussion (CP) of some hand-held sporting equipment (such as tennis rackets and baseball bats) for athletic performance is well known. In order to avoid injuries it is important that powerful blows are located close to the CP. Several species of glyptodont (giant armoured mammals) had tail clubs that can be modelled as rigid beams (like baseball bats) and it is generally assumed that these were useful for agonistic behaviour.
View Article and Find Full Text PDFProc Biol Sci
September 2005
'Terror bird' is a common name for the family Phorusrhacidae. These large terrestrial birds were probably the dominant carnivores on the South American continent from the Middle Palaeocene to the Pliocene-Pleistocene limit. Here we use a mechanical model based on tibiotarsal strength to estimate maximum running speeds of three species of terror birds: Mesembriornis milneedwardsi, Patagornis marshi and a specimen of Phorusrhacinae gen.
View Article and Find Full Text PDF