The successful synthesis of high-entropy alloy (HEA) nanoparticles, a long-sought goal in materials science, opens a new frontier in materials science with applications across catalysis, structural alloys, and energetic materials. Recently, a CoMoFeNiCu HEA made of earth-abundant elements was shown to have a high catalytic activity for ammonia decomposition, which rivals that of state-of-the-art, but prohibitively expensive, ruthenium catalysts. Using a computational approach based on first-principles calculations in conjunction with data analytics and machine learning, we build a model to rapidly compute the adsorption energy of H, N, and NH ( = 1, 2, 3) species on CoMoFeNiCu alloy surfaces with varied alloy compositions and atomic arrangements.
View Article and Find Full Text PDFComput Med Imaging Graph
April 2021
High energy impacts at joint locations often generate highly fragmented, or comminuted, bone fractures. Current approaches for treatment require physicians to decide how to classify the fracture within a hierarchy fracture severity categories. Each category then provides a best-practice treatment scenario to obtain the best possible prognosis for the patient.
View Article and Find Full Text PDFThis paper presents a novel method to segment bone fragments imaged using 3D Computed Tomography (CT). Existing image segmentation solutions often lack accuracy when segmenting internal trabecular and cancellous bone tissues from adjacent soft tissues having similar appearance and often merge regions associated with distinct fragments. These issues create problems in downstream visualization and pre-operative planning applications and impede the development of advanced image-based analysis methods such as virtual fracture reconstruction.
View Article and Find Full Text PDF