Publications by authors named "Warwicker J"

Metabolic changes during tumour development lead to acidification of the extracellular environment and a smaller increase of intracellular pH. Searches for somatic missense mutations that could reveal adaptation to altered pH have focussed on arginine to histidine changes, part of a general arginine depletion that originates from DNA mutational mechanisms. Analysis of mutations to histidine, potentially a simple route to the introduction of pH-sensing, shows no clear biophysical separation overall of subsets that are more and less frequently mutated in cancer genomes.

View Article and Find Full Text PDF

The nonheme iron dioxygenase capreomycin C (CmnC) hydroxylates a free L-arginine amino acid regio- and stereospecifically at the C-position as part of the capreomycin antibiotics biosynthesis. Little is known on its structure, catalytic cycle and substrate specificity and, therefore, a comprehensive computational study was performed. A large QM cluster model of CmnC was created of 297 atoms and the mechanisms for C-H, C-H and C-H hydroxylation and C-C desaturation were investigated.

View Article and Find Full Text PDF

Platelets are highly reactive fragments of megakaryocytes that play a fundamental role in thrombosis and hemostasis. Predictably, all conventional anti-platelet therapies elicit bleeding, raising the question whether the thrombotic activity of platelets can be targeted separately. In this study, we describe a novel approach of inhibiting platelet activation through the use of bispecific single-chain variable fragments (bi-scFvs), termed cis-acting platelet receptor inhibitors (CAPRIs) that harness the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing co-inhibitory receptor G6b-B (G6B) to suppress immunoreceptor tyrosine-based (ITAM)-containing receptor-mediated platelet activation.

View Article and Find Full Text PDF

Adrenaline and noradrenaline, released as hormones and/or neurotransmitters, exert diverse physiological functions in vertebrates, and teleost fishes are widely used as model organisms to study adrenergic regulation; however, such investigations often rely on receptor subtype-specific pharmacological agents (agonists and antagonists; see Glossary) developed and validated in mammals. Meanwhile, evolutionary (phylogenetic and comparative genomic) studies have begun to unravel the diversification of adrenergic receptors (ARs) and reveal that whole-genome duplications and pseudogenization events in fishes results in notable distinctions from mammals in their genomic repertoire of ARs, while lineage-specific gene losses within teleosts have generated significant interspecific variability. In this Review, we visit the evolutionary history of ARs (including α1-, α2- and β-ARs) to highlight the prominent interspecific differences in teleosts, as well as between teleosts and other vertebrates.

View Article and Find Full Text PDF

Many transmembrane proteins are modulated by intracellular or extracellular pH. Investigation of pH dependence generally proceeds by mutagenesis of a wide set of amino acids, guided by properties such as amino-acid conservation and structure. Prediction of pKas can streamline this process, allowing rapid and effective identification of amino acids of interest with respect to pH dependence.

View Article and Find Full Text PDF

Vanadium haloperoxidases (VHPOs) are unique enzymes in biology that catalyze a challenging halogen transfer reaction and convert a strong aromatic C-H bond into C-X (X = Cl, Br, I) with the use of a vanadium cofactor and HO. The VHPO catalytic cycle starts with the conversion of hydrogen peroxide and halide (X = Cl, Br, I) into hypohalide on the vanadate cofactor, and the hypohalide subsequently reacts with a substrate. However, it is unclear whether the hypohalide is released from the enzyme or otherwise trapped within the enzyme structure for the halogenation of organic substrates.

View Article and Find Full Text PDF

Therapeutic proteins can be challenging to develop due to their complexity and the requirement of an acceptable formulation to ensure patient safety and efficacy. To date, there is no universal formulation development strategy that can identify optimal formulation conditions for all types of proteins in a fast and reliable manner. In this work, high-throughput characterization, employing a toolbox of five techniques, was performed on 14 structurally different proteins formulated in 6 different buffer conditions and in the presence of 4 different excipients.

View Article and Find Full Text PDF

Flaviviruses are enveloped viruses which include human pathogens that are predominantly transmitted by mosquitoes and ticks. Some, such as dengue virus, exhibit the phenomenon of antibody-dependent enhancement (ADE) of disease, making vaccine-based routes of fighting infections problematic. The pH-dependent conformational change of the envelope (E) protein required for fusion between the viral and endosomal membranes is an attractive point of inhibition by antivirals as it has the potential to diminish the effects of ADE.

View Article and Find Full Text PDF

Bestrophin 1 (Best1) is a chloride channel that localises to the plasma membrane of retinal pigment epithelium (RPE) cells. Mutations in the BEST1 gene are associated with a group of untreatable inherited retinal dystrophies (IRDs) called bestrophinopathies, caused by protein instability and loss-of-function of the Best1 protein. 4PBA and 2-NOAA have been shown to rescue the function, expression, and localisation of Best1 mutants; however, it is of interest to find more potent analogues as the concentration of the drugs required is too high (2.

View Article and Find Full Text PDF

Interfacial adsorption is a molecular process occurring during the production, purification, transport, and storage of antibodies, with a direct impact on their structural stability and subsequent implications on their bioactivities. While the average conformational orientation of an adsorbed protein can be readily determined, its associated structures are more complex to characterize. Neutron reflection has been used in this work to investigate the conformational orientations of the monoclonal antibody COE-3 and its Fab and Fc fragments at the oil/water and air/water interfaces.

View Article and Find Full Text PDF

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients.

View Article and Find Full Text PDF

The total free energy of a hydrated biomolecule and its corresponding decomposition of energy and entropy provides detailed information about regions of thermodynamic stability or instability. The free energies of four hydrated globular proteins with different net charges are calculated from a molecular dynamics simulation, with the energy coming from the system Hamiltonian and entropy using multiscale cell correlation. Water is found to be most stable around anionic residues, intermediate around cationic and polar residues, and least stable near hydrophobic residues, especially when more buried, with stability displaying moderate entropy-enthalpy compensation.

View Article and Find Full Text PDF

The N-terminal transactivation domain (TAD) of p53 is a disordered region with multiple phosphorylation sites. Phosphorylation at Thr18 is crucial for the release of p53 from its negative regulator, MDM2. In stressed cells, CK1δ is responsible for phosphorylating Thr18, but requires Ser15 to be phosphorylated.

View Article and Find Full Text PDF

The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop.

View Article and Find Full Text PDF

Since pH sensitivity has a fundamental role in biology, much effort has been committed to establishing physical models to rationalize and predict pH dependence from molecular structures. Two of the key challenges are to accurately calculate ionizable group solvation and hydration and then to apply this modeling to all conformations relevant to the process in question. Explicit solvent methods coupled to molecular dynamics simulation are increasingly complementing lower resolution implicit solvent techniques, but equally, the scale of biological data acquisition leaves a role for high-throughput modeling.

View Article and Find Full Text PDF

Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation.

View Article and Find Full Text PDF

Transition between receptor binding domain (RBD) up and down forms of the SARS-CoV-2 spike protein trimer is coupled to receptor binding and is one route by which variants can alter viral properties. It is becoming apparent that key roles in the transition are played by pH and a more compact closed form, termed locked. Calculations of pH-dependence are made for a large set of spike trimers, including locked form trimer structures that have recently become available.

View Article and Find Full Text PDF

Bacterial expression systems remain a widely used host for recombinant protein production. However, overexpression of recombinant target proteins in bacterial systems such as Escherichia coli can result in poor solubility and the formation of insoluble aggregates. As a consequence, numerous strategies or alternative engineering approaches have been employed to increase recombinant protein production.

View Article and Find Full Text PDF

Understanding the intricate interplay of interactions between proteins, excipients, ions and water is important to achieve the effective purification and stable formulation of protein therapeutics. The free energy of lysozyme interacting with two kinds of polyanionic excipients, citrate and tripolyphosphate, together with sodium chloride and TRIS-buffer, are analysed in multiple-walker metadynamics simulations to understand why tripolyphosphate causes lysozyme to precipitate but citrate does not. The resulting multiscale decomposition of energy and entropy components for water, sodium chloride, excipients and lysozyme reveals that lysozyme is more stabilised by the interaction of tripolyphosphate with basic residues.

View Article and Find Full Text PDF

Charge is a key determinant of intrinsically disordered protein (IDP) and intrinsically disordered region (IDR) properties. IDPs and IDRs are enriched in sites of phosphorylation, which alters charge. Visualizing the degree to which phosphorylation modulates the charge profile of a sequence would assist in the functional interpretation of IDPs and IDRs.

View Article and Find Full Text PDF

Mer is a member of the TAM (Tyro3, Axl, Mer) kinase family that has been associated with cancer progression, metastasis, and drug resistance. Their essential function in immune homeostasis has prompted an interest in their role as modulators of antitumor immune response in the tumor microenvironment. Here we illustrate the outcomes of an extensive lead-generation campaign for identification of Mer inhibitors, focusing on the results from concurrent, orthogonal high-throughput screening approaches.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative agent of the coronavirus disease 2019 (COVID-19) pandemic, is thought to release its RNA genome at either the cell surface or within endosomes, the balance being dependent on spike protein stability, and the complement of receptors, co-receptors and proteases. To investigate possible mediators of pH-dependence, pKa calculations have been made on a set of structures for spike protein ectodomain and fragments from SARS-CoV-2 and other coronaviruses. Dominating a heat map of the aggregated predictions, three histidine residues in S2 are consistently predicted as destabilizing in pre-fusion (all three) and post-fusion (two of the three) structures.

View Article and Find Full Text PDF

The viomycin biosynthesis enzyme VioC is a nonheme iron and α-ketoglutarate-dependent dioxygenase involved in the selective hydroxylation of l-arginine at the C-position for antibiotics biosynthesis. Interestingly, experimental studies showed that using the substrate analogue, namely, l-homo-arginine, a mixture of products was obtained originating from C-hydroxylation, C-hydroxylation, and C-C-desaturation. To understand how the addition of one CH group to a substrate can lead to such a dramatic change in selectivity and activity, we decided to perform a computational study using quantum mechanical (QM) cluster models.

View Article and Find Full Text PDF

The activation loop (A-loop) plays a key role in regulating the catalytic activity of protein kinases. Phosphorylation in this region enhances the phosphoryl transfer rate of the kinase domain and increases its affinity for ATP. Furthermore, the A-loop possesses autoinhibitory functions in some kinases, where it collapses onto the protein surface and blocks substrate binding when unphosphorylated.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations in combination with small organic probes present in the solvent have previously been used as a method to reveal cryptic pockets that may not have been identified in experimental structures. We report such a method implemented within the CHARMM force field using the GROMACS simulation package to effectively explore cryptic pockets on the surfaces of membrane-embedded proteins using benzene as a probe molecule. This method, for which we have made implementation files freely available, relies on modified nonbonded parameters in addition to repulsive potentials between membrane lipids and benzene molecules.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionli0d4b98hj46vbhoj2v5co5khv2s2sos): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once