Publications by authors named "Warwick Stiller"

Article Synopsis
  • Cotton is a crucial global fiber crop, but its yield and quality vary significantly due to genetic differences and environmental influences.
  • Modern breeding practices face challenges related to a limited genetic pool, making it harder to achieve future yield improvements.
  • Researchers created high-quality reference genomes for three cotton cultivars and updated a genetic standard, revealing unexpected genetic diversity that can inform future breeding for better fiber quality and sustainability.
View Article and Find Full Text PDF

A Bayesian linkage disequilibrium-based multiple-locus mixed model identified QTLs for fibre, seed and oil traits and predicted breeding worthiness of test lines, enabling their simultaneous improvement in cotton. Improving cotton seed and oil yields has become increasingly important while continuing to breed for higher lint yield. In this study, a novel Bayesian linkage disequilibrium-based multiple-locus mixed model was developed for QTL identification and genomic prediction (GP).

View Article and Find Full Text PDF

Background: Cotton accounts for 80% of the global natural fibre production. Its leaf hairiness affects insect resistance, fibre yield, and economic value. However, this phenotype is still qualitatively assessed by visually attributing a Genotype Hairiness Score (GHS) to a leaf/plant, or by using the HairNet deep-learning model which also outputs a GHS.

View Article and Find Full Text PDF

Verticillium wilt (VW) is an important and widespread disease of cotton and once established is long-lived and difficult to manage. In Australia, the non-defoliating pathotype of is the most common, and extremely virulent. Breeding cotton varieties with increased VW resistance is the most economical and effective method of controlling this disease and is greatly aided by understanding the genetics of resistance.

View Article and Find Full Text PDF

Numerous genetic loci and several functionally characterized genes have been linked to determination of lint percentage (lint%), one of the most important cotton yield components, but we still know little about the major genetic components underlying lint%. Here, we first linked the genetic loci containing MYB25-like_At and HD1_At to the fiberless seed trait of 'SL1-7-1' and found that MYB25-like_At and HD1_At were very lowly expressed in 'SL1-7-1' ovules during fiber initiation. We then dissected the genetic components involved in determination of lint% using segregating populations derived from crosses of fuzzless mutants and intermediate segregants with different lint%, which not only confirmed the HD1_At locus but identified the HD1_Dt locus as being the major genetic components contributing to fiber initiation and lint%.

View Article and Find Full Text PDF

Cotton is a key global fiber crop. However, yield potential is limited by the presence of endemic and introduced pests and diseases. The introduction of host plant resistance (HPR), defined as the purposeful use of resistant crop cultivars to reduce the impact of pests and diseases, has been a key breeding target for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program.

View Article and Find Full Text PDF

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD).

View Article and Find Full Text PDF

Global plant breeding activities are reliant on the available genetic variation held in extant varieties and germplasm collections. Throughout the mid- to late 1900s, germplasm collecting efforts were prioritized for breeding programs to archive precious material before it disappeared and led to the development of the numerous large germplasm resources now available in different countries. In recent decades, however, the maintenance and particularly the expansion of these germplasm resources have come under threat, and there has been a significant decline in investment in further collecting expeditions, an increase in global biosecurity restrictions, and restrictions placed on the open exchange of some commercial germplasm between breeders.

View Article and Find Full Text PDF

Genomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance. Though GP studies have been widely conducted in various crop species such as wheat and maize, its application in cotton, an essential renewable textile fibre crop, is still significantly underdeveloped.

View Article and Find Full Text PDF

Background: Leaf hairiness (pubescence) is an important plant phenotype which regulates leaf transpiration, affects sunlight penetration, and provides increased resistance or susceptibility against certain insects. Cotton accounts for 80% of global natural fibre production, and in this crop leaf hairiness also affects fibre yield and value. Currently, this key phenotype is measured visually which is slow, laborious and operator-biased.

View Article and Find Full Text PDF

Black root rot (BRR) is an economically important disease of cotton and other crops, especially in cooler regions with short growing seasons. Symptoms include black discoloration of the roots, reduced number of lateral roots and stunted or slow plant growth. The cultivated tetraploid Gossypium species are susceptible to BRR.

View Article and Find Full Text PDF

Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5.

View Article and Find Full Text PDF

Due to an unfortunate misunderstanding, an extra middle initial erroneously appeared in the original publication and the full name of the first author should read Shi Ming Liu.

View Article and Find Full Text PDF

Only a few transcription factors (TFs) regulating which cells of the ovule epidermis differentiate into lint fibres have been identified in cotton (Gossypium hirsutum L.). In this study, the effect on lint yield and fibre quality of over-expressing three TFs in cotton, GhHD-1, GhMYB25 and GhMYB25Like, and their double and triple combinations, were evaluated in field experiments over two seasons.

View Article and Find Full Text PDF

Cotton fibres, as single cells arising from the seed coat, can be classified as lint and fuzz according to their final length. is a cultivated diploid cotton species and a potential donor of the A subgenome of the more widely grown tetraploid cottons. In this study, we performed genetic studies on one lintless and seven fuzzless accessions.

View Article and Find Full Text PDF

Genomic selection (GS) has successfully been used in plant breeding to improve selection efficiency and reduce breeding time and cost. However, there has not been a study to evaluate GS prediction models that may be used for predicting cotton breeding lines across multiple environments. In this study, we evaluated the performance of Bayes Ridge Regression, BayesA, BayesB, BayesC and Reproducing Kernel Hilbert Spaces regression models.

View Article and Find Full Text PDF

Cotton fibres are single-celled trichomes arising from the epidermal cells of the seed coat and may be either long (lint) or very short (fuzz). The dominant fuzzless N1 of Gossypium hirsutum is a defective allele of the At-subgenome homoeolog of MYB25-like, but the genetic components underlying the recessive fuzzless trait from G. barbadense (Gb) are unknown.

View Article and Find Full Text PDF

Cotton has lost many ancestral defensive traits against key invertebrate pests. This is suggested by the levels of resistance to some pests found in wild cotton genotypes as well as in cultivated landraces and is a result of domestication and a long history of targeted breeding for yield and fiber quality, along with the capacity to control pests with pesticides. Genetic modification (GM) allowed integration of toxins from a bacteria into cotton to control key Lepidopteran pests.

View Article and Find Full Text PDF

Diverse leaf morphology has been observed among accessions of Gossypium hirsutum, including okra leaf, which has advantages and disadvantages in cotton production. The okra leaf locus has been mapped to chromosome 15 of the Dt subgenome, but the underlying gene has yet to be identified. In this study, we used a combination of targeted association analysis, F2 population-based fine mapping, and comparative sequencing of orthologues to identify a candidate gene underlying the okra leaf trait in G.

View Article and Find Full Text PDF

The twospotted spider mite (Tetranychus urticae Koch) is capable of dramatically reducing the yield of cotton crops and is often difficult and expensive to control. This study investigated and compared two important plant hormones, jasmonic acid (JA) and salicylic acid (SA), as constitutive and/or induced defence response components in a mite susceptible commercial cotton cultivar, Sicot 71 (Gossypium hirsutum L.) and a resistant diploid cotton BM13H (Gossypium arboreum L.

View Article and Find Full Text PDF

Background: The twospotted spider mite (Tetranychus urticae Koch) is an important pest of cotton. This pest has a broad host range, but when changing between hosts an initial decline in fitness often occurs. This is usually followed by an increase in fitness after rapid adaptation to the new host, usually within five generations.

View Article and Find Full Text PDF

Background: Life history parameters are useful tools for comparing the fitness of pests on different host plants. This study compared life history parameters of twospotted spider mites (Tetranychus urticae Koch) on two resistant cotton Gossypium genotypes (BM13H and Sipima 280) and one susceptible genotype (Sicot 71). The effects of both constitutive and induced defences were assessed.

View Article and Find Full Text PDF