Cyanobacterial mats are commonly reported as hotspots of microbial diversity across polar environments. These thick, multilayered microbial communities provide a refuge from extreme environmental conditions, with many species able to grow and coexist despite the low allochthonous nutrient inputs. The visibly dominant phototrophic biomass is dependent on internal nutrient recycling by heterotrophic organisms within the mats; however, the specific contribution of heterotrophic protists remains little explored.
View Article and Find Full Text PDFUnlabelled: Winter conditions greatly alter the limnological properties of lotic ecosystems and the availability of nutrients, carbon, and energy resources for microbial processes. However, the composition and metabolic capabilities of winter microbial communities are still largely uncharacterized. Here, we sampled the winter under-ice microbiome of the Great Whale River (Nunavik, Canada) and its discharge plume into Hudson Bay.
View Article and Find Full Text PDFJCM 32575 was isolated from glacial sediments on Ellesmere Island in the Canadian High Arctic and described as a new basidiomycetous yeast. This species does not require amino acids and vitamins for growth and can grow at sub-zero temperatures. Here, we report a draft genome sequence of this strain.
View Article and Find Full Text PDFArctic climate change is leading to sea-ice attrition in the Last Ice Area along the northern coast of Canada and Greenland, but less attention has been given to the associated land-based ecosystems. Here we evaluated bacterial community structure in a hydrologically coupled cryo-ecosystem in the region: Thores Glacier, proglacial Thores Lake, and its outlet to the sea. Deep amplicon sequencing revealed that Polaromonas was ubiquitous, but differed genetically among diverse niches.
View Article and Find Full Text PDFUncultivated microbial taxa represent a large fraction of global microbial diversity and likely drive numerous biogeochemical transformations in natural ecosystems. Geographically isolated, polar ecosystems are complex microbial biomes and refuges of underexplored taxonomic and functional biodiversity. Combining amplicon sequencing with genome-centric metagenomic analysis of samples from one of the world's northernmost lakes (Lake A, Ellesmere Island, Canadian High Arctic), we identified a novel bacterial taxon that dominates in the bottom layer of anoxic, sulfidic, relict sea water that was isolated from the Arctic Ocean some 3000 years ago.
View Article and Find Full Text PDFBackground: Cyanobacteria and eukaryotic phytoplankton produce long-chain alkanes and generate around 100 times greater quantities of hydrocarbons in the ocean compared to natural seeps and anthropogenic sources. Yet, these compounds do not accumulate in the water column, suggesting rapid biodegradation by co-localized microbial populations. Despite their ecological importance, the identities of microbes involved in this cryptic hydrocarbon cycle are mostly unknown.
View Article and Find Full Text PDFThermokarst lakes are important features of subarctic landscapes and are a substantial source of greenhouse gases, although the extent of gas produced varies seasonally. Microbial communities are responsible for the production of methane and CO but the "top down" forces that influence microbial dynamics (i.e.
View Article and Find Full Text PDFMilne Fiord, located on the coastal margin of the Last Ice Area (LIA) in the High Arctic (82°N, Canada), harbors an epishelf lake, a rare type of ice-dependent ecosystem in which a layer of freshwater overlies marine water connected to the open ocean. This microbe-dominated ecosystem faces catastrophic change due to the deterioration of its ice environment related to warming temperatures. We produced the first assessment of viral abundance, diversity, and distribution in this vulnerable ecosystem and explored the niches available for viral taxa and the functional genes underlying their distribution.
View Article and Find Full Text PDFMissions to detect extraterrestrial life are being designed to visit Europa and Enceladus in the next decades. The contact between the mission payload and the habitable subsurface of these satellites involves significant risk of forward contamination. The standardization of protocols to decontaminate ice cores from planetary field analogs of icy moons, and monitor the contamination in downstream analysis, has a direct application for developing clean approaches crucial to life detection missions in these satellites.
View Article and Find Full Text PDFFreshwater salinization is an ongoing concern for north temperate lakes; however, little is known about its impacts on microbial communities, particularly for bacteria. We tested the hypotheses that road de-icing salt induces changes in the microbial community structure of lake plankton, and that changes due to chloride would differ from those due to urban snowmelt because of additional chemicals in the snowmelt. In a laboratory incubator experiment, an overwintering plankton community in lake water was exposed for two weeks to either NaCl or municipal road snow with the same level of chloride.
View Article and Find Full Text PDFCurrent knowledge of the processes that shape prokaryotic community assembly in sea ice across polar ecosystems is scarce. Here, we coupled culture-dependent (bacterial isolation on R2A medium) and culture-independent (high-throughput 16S rRNA gene sequencing) approaches to provide the first comprehensive assessment of prokaryotic communities in the late winter ice and its underlying water along a natural salinity gradient in coastal Hudson Bay, an iconic cryo-environment that marks the ecological transition between Canadian Subarctic and Arctic biomes. We found that prokaryotic community assembly processes in the ice were less selective at low salinity since typical freshwater taxa such as Frankiales, Burkholderiales, and Chitinophagales dominated both the ice and its underlying water.
View Article and Find Full Text PDFArctic lakes are experiencing increasingly shorter periods of ice cover due to accelerated warming at northern high latitudes. Given the control of ice cover thickness and duration over many limnological processes, these changes will have pervasive effects. However, due to their remote and extreme locations even first-order data on lake ecology is lacking for many ecosystems.
View Article and Find Full Text PDFLittle is known about the microbial diversity of rivers that flow across the changing subarctic landscape. Using amplicon sequencing (rRNA and rRNA genes) combined with HPLC pigment analysis and physicochemical measurements, we investigated the diversity of two size fractions of planktonic Bacteria, Archaea and microbial eukaryotes along environmental gradients in the Great Whale River (GWR), Canada. This large subarctic river drains an extensive watershed that includes areas of thawing permafrost, and discharges into southeastern Hudson Bay as an extensive plume that gradually mixes with the coastal marine waters.
View Article and Find Full Text PDFDPANN archaea account for half of the archaeal diversity of the biosphere, but with few cultivated representatives, their metabolic potential and environmental functions are poorly understood. The extreme geochemical and environmental conditions in meromictic ice-capped Lake A, in the Canadian High Arctic, provided an isolated, stratified model ecosystem to resolve the distribution and metabolism of uncultured aquatic DPANN archaea living across extreme redox and salinity gradients, from freshwater oxygenated conditions, to saline, anoxic, sulfidic waters. We recovered 28 metagenome-assembled genomes (MAGs) of DPANN archaea that provided genetic insights into their ecological function.
View Article and Find Full Text PDFWith thousands of discovered planets orbiting other stars and new missions that will explore our solar system, the search for life in the universe has entered a new era. However, a reference database to enable our search for life on the surface of icy exoplanets and exomoons by using records from Earth's icy biota is missing. Therefore, we developed a spectra catalogue of life in ice to facilitate the search for extraterrestrial signs of life.
View Article and Find Full Text PDFMicrofluidic bioanalytical platforms are driving discoveries from synthetic biology to the health sciences. In this work, we present a platform for live-cell imaging and automated species detection in mixed cyanobacterial biofilms from cold climate environments. Using a multimodal microscope with custom optics applied to a chip with six parallel growth channels, we monitored biofilm dynamics via continuous imaging at natural irradiance levels.
View Article and Find Full Text PDFSalinization of freshwater is increasingly observed in regions where chloride de-icing salts are applied to the roads in winter, but little is known about the effects on microbial communities. In this study, we analyzed the planktonic microbiomes of four lakes that differed in degree of urbanization, eutrophication and salinization, from an oligotrophic reference lake with no surrounding roads, to a eutrophic, salinized lake receiving runoff from a highway. We tested the hypothesis that an influence of road salts would be superimposed on the effects of season and trophic status.
View Article and Find Full Text PDFNostoc (Nostocales, Cyanobacteria) has a global distribution in the Polar Regions. However, the genomic diversity of Nostoc is little known and there are no genomes available for polar Nostoc. Here we carried out the first genomic analysis of the Nostoc commune morphotype with a recent sample from the High Arctic and a herbarium specimen collected during the British Arctic Expedition (1875-76).
View Article and Find Full Text PDFBackground: The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients.
View Article and Find Full Text PDFIce cover persists throughout summer over many lakes at extreme polar latitudes but is likely to become increasingly rare with ongoing climate change. Here we addressed the question of how summer ice-cover affects the underlying water column of Ward Hunt Lake, a freshwater lake in the Canadian High Arctic, with attention to its vertical gradients in limnological properties that would be disrupted by ice loss. Profiling in the deepest part of the lake under thick mid-summer ice revealed a high degree of vertical structure, with gradients in temperature, conductivity and dissolved gases.
View Article and Find Full Text PDFPermafrost thaw lakes including thermokarst lakes and ponds are ubiquitous features of Subarctic and Arctic landscapes and are hotspots of microbial activity. Input of terrestrial organic matter into the planktonic microbial loop of these lakes may greatly amplify global greenhouse gas emissions. This microbial loop, dominated in the summer by aerobic microorganisms including phototrophs, is radically different in the winter, when metabolic processes shift to the anaerobic degradation of organic matter.
View Article and Find Full Text PDFThermokarst lakes are one of the most abundant types of microbial ecosystems in the circumpolar North. These shallow basins are formed by the thawing and collapse of ice-rich permafrost, with subsequent filling by snow and ice melt. Until now, permafrost thaw lakes have received little attention for isolation of microorganisms by culture-based analysis.
View Article and Find Full Text PDFHigh-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column.
View Article and Find Full Text PDFThe thawing of ice-rich permafrost soils in northern peatlands leads to the formation of thermokarst ponds, surrounded by organic-rich soils. These aquatic ecosystems are sites of intense microbial activity, and CO and CH emissions. Many of the pond systems in northern landscapes and their surrounding peatlands are hydrologically contiguous, but little is known about the microbial connectivity of concentric habitats around the thermokarst ponds, or the effects of peat accumulation and infilling on the microbial communities.
View Article and Find Full Text PDF