This study aimed to evaluate and analyze the performance of a customized Chat Generative Pre-Trained Transformer (ChatGPT), known as GPT, against pathology residents in providing microscopic descriptions and diagnosing diseases from histopathological images. A dataset of representative photomicrographs from 70 diseases across 14 organ systems was analyzed by a customized version of ChatGPT-4 (GPT-4) and pathology residents. Two pathologists independently evaluated the microscopic descriptions and diagnoses using a predefined scoring system (0-4 for microscopic descriptions and 0-2 for pathological diagnoses), with higher scores indicating greater accuracy.
View Article and Find Full Text PDFAnn Diagn Pathol
June 2024
Objectives: This study aimed to evaluate the accuracy and interobserver reliability of diagnosing and subtyping gastric intestinal metaplasia (IM) among general pathologists and pathology residents at a university hospital in Thailand, focusing on the challenges in the histopathologic evaluation of gastric IM for less experienced practitioners.
Methods: The study analyzed 44 non-neoplastic gastric biopsies, using a consensus diagnosis of gastrointestinal pathologists as the reference standard. Participants included 6 general pathologists and 9 pathology residents who assessed gastric IM and categorized its subtype (complete, incomplete, or mixed) on digital slides.