Publications by authors named "Warri A"

The mouse estrous cycle is divided into four stages: proestrus (P), estrus (E), metestrus (M), and diestrus (D). The estrous cycle affects reproductive hormone levels in a wide variety of tissues. Therefore, to obtain reliable results from female mice, it is important to know the estrous cycle stage during sampling.

View Article and Find Full Text PDF

We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations.

View Article and Find Full Text PDF

Maternal or paternal high fat (HF) diet can modify the epigenome in germ cells and fetal somatic cells leading to an increased susceptibility among female offspring of multiple generations to develop breast cancer. We determined if combined treatment with broad spectrum DNA methyltransferase (DNMT) inhibitor hydralazine and histone deacetylase (HDAC) inhibitor valproic acid (VPA) will reverse this increased risk. C57BL/6 mouse dams were fed either a corn oil-based HF or control diet during pregnancy.

View Article and Find Full Text PDF

The postnatal mammary gland undergoes repeated cycles of proliferation and cell death, most notably when the fully differentiated (lactating) gland dedifferentiates to a prelactation state. Accumulation of milk proteins in the secretory epithelium creates the stress signal that triggers this process (involution). How this stress is perceived, and the cellular processes that are subsequently activated, remain unclear.

View Article and Find Full Text PDF

In the mammary gland, vimentin intermediate filaments are expressed in stromal cells and in basal epithelial cell populations, including gland-reconstituting mammary stem cells, with largely undefined functions. Here, we have studied how vimentin deficiency affects mouse mammary gland development. We find that, in adult vimentin knockout mice ( ), mammary ductal outgrowth is delayed.

View Article and Find Full Text PDF

Purpose: Whether it is safe for estrogen receptor-positive (ER+) patients with breast cancer to consume soy isoflavone genistein remains controversial. We compared the effects of genistein intake mimicking either Asian (lifetime) or Caucasian (adulthood) intake patterns to that of starting its intake during tamoxifen therapy using a preclinical model.

Experimental Design: Female Sprague-Dawley rats were fed an AIN93G diet supplemented with 0 (control diet) or 500 ppm genistein from postnatal day 15 onward (lifetime genistein).

View Article and Find Full Text PDF

SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpin), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty.

View Article and Find Full Text PDF

The unfolded protein response is an endoplasmic reticulum stress pathway mediated by the protein chaperone glucose regulated-protein 78 (GRP78). Metabolic analysis of breast cancer cells shows that GRP78 silencing increases the intracellular concentrations of essential polyunsaturated fats, including linoleic acid. Accumulation of fatty acids is due to an inhibition of mitochondrial fatty acid transport, resulting in a reduction of fatty acid oxidation.

View Article and Find Full Text PDF

Background: Responses to endocrine therapies vary among patients with estrogen receptor (ER+) breast cancer. We studied whether in utero exposure to endocrine-disrupting compounds might explain these variations.

Methods: We describe a novel ER+ breast cancer model to study de novo and acquired tamoxifen (TAM) resistance.

View Article and Find Full Text PDF

Interferon regulatory factor-1 (IRF1) is a tumor suppressor that regulates cell fate in several cell types. Here, we report an inverse correlation in expression of nuclear IRF1 and the autophagy regulator ATG7 in human breast cancer cells that directly affects their cell fate. In mice harboring mutant Atg7, nuclear IRF1 was increased in mammary tumors, spleen, and kidney.

View Article and Find Full Text PDF

Antiestrogen therapy induces the unfolded protein response (UPR) in estrogen receptor-positive (ER(+)) breast cancer. X-box binding protein 1 (XBP1), which exists in the transcriptionally inactive unspliced form [XBP1(U)] and the spliced active form [XBP1(S)], is a key UPR component mediating antiestrogen resistance. We now show a direct link between the XBP1 and NF-κB survival pathways in driving the cell fate decisions in response to antiestrogens in ER(+) breast cancer cells, both in vitro and in a xenograft mouse model.

View Article and Find Full Text PDF

Background: About 70% of all breast cancers are estrogen receptor alpha positive (ER+) and are treated with antiestrogens. However, 50% of ER + tumors develop resistance to these drugs (endocrine resistance). In endocrine resistant cells, an adaptive pathway called the unfolded protein response (UPR) is elevated that allows cells to tolerate stress more efficiently than in sensitive cells.

View Article and Find Full Text PDF

Purpose: Estrogen receptor-α (ERα)-targeted therapies including tamoxifen (TAM) or Faslodex (ICI) are used to treat ER(+) breast cancers. Up to 50% of tumors will acquire resistance to these interventions. Autophagy has been implicated as a major driver of antiestrogen resistance.

View Article and Find Full Text PDF

Approximately 70% of all newly diagnosed breast cancers express estrogen receptor (ER)-α. Although inhibiting ER action using targeted therapies such as fulvestrant (ICI) is often effective, later emergence of antiestrogen resistance limits clinical use. We used antiestrogen-sensitive and -resistant cells to determine the effect of antiestrogens/ERα on regulating autophagy and unfolded protein response (UPR) signaling.

View Article and Find Full Text PDF

To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups.

View Article and Find Full Text PDF

In estrogen receptor-positive (ER+) breast cancer cells, BCL2 overexpression contributes to antiestrogen resistance. Direct targeting of the antiapoptotic BCL2 members with GX15-070 (obatoclax), a BH3-mimetic currently in clinical development, is an attractive strategy to overcome antiestrogen resistance in some breast cancers. Recently, GX15-070 has been shown to induce both apoptosis and autophagy, yet the underlying cell death mechanisms have yet to be elucidated.

View Article and Find Full Text PDF

Women are using estrogens for many purposes, such as to prevent pregnancy or miscarriage, or to treat menopausal symptoms. Estrogens also have been used to treat breast cancer which seems puzzling, since there is convincing evidence to support a link between high lifetime estrogen exposure and increased breast cancer risk. In this review, we discuss the findings that maternal exposure to the synthetic estrogen diethylstilbestrol during pregnancy increases breast cancer risk in both exposed mothers and their daughters.

View Article and Find Full Text PDF

Maternal exposures to environmental factors during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. Here we investigate whether feeding pregnant rats a high-fat (HF)- or ethinyl-oestradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. We show that mammary tumourigenesis is higher in daughters and granddaughters of HF rat dams and in daughters and great-granddaughters of EE2 rat dams.

View Article and Find Full Text PDF

While more than 70% of breast cancers express estrogen receptor-α (ER+), endocrine therapies targeting these receptors often fail. The molecular mechanisms that underlie treatment resistance remain unclear. We investigated the potential role of glucose-regulated protein 78 (GRP78) in mediating estrogen resistance.

View Article and Find Full Text PDF

TGF-β regulates several steps in cancer metastasis, including the establishment of bone metastatic lesions. TGF-β is released from bone during osteoclastic bone resorption and it stimulates breast cancer cells to produce osteolytic factors such as interleukin 11 (IL-11). We conducted a cell-based siRNA screen and identified heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) as a critical gene for TGF-β-induced IL-11 production in highly bone metastatic MDA-MB-231(SA) breast cancer cells.

View Article and Find Full Text PDF

Pregnancy can both reduce and increase lifetime breast cancer risk, and it also induces a short-term, transient increase in risk. Several biological mechanisms have been proposed to explain the protective effect, including pregnancy-induced increase in circulating estrogen levels leading to reduced estrogen receptor (ER) expression and activity. Persistent changes in ER-regulated gene expression may then alter the response of the breast to postpregnancy hormonal exposures originating, for example, from food.

View Article and Find Full Text PDF

How breast cancer cells respond to the stress of endocrine therapies determines whether they will acquire a resistant phenotype or execute a cell-death pathway. After a survival signal is successfully executed, a cell must decide whether it should replicate. How these cell-fate decisions are regulated is unclear, but evidence suggests that the signals that determine these outcomes are highly integrated.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death.

View Article and Find Full Text PDF

This study investigated whether prepubertal dietary exposure to genistein reduces mammary tumorigenesis by upregulating Brca1 expression in mice. Heterozygous Brca1(+/-) mice and their wild-type (WT) littermates were fed control AIN93G diet or 500 ppm genistein-supplemented AIN93G diet from postnatal day (PND) 15 to PND30 and then switched to AIN93G diet. Prepubertal dietary exposure to genistein reduced 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary incidence (P = 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how cow's milk with varying isoflavone levels impacts the development of mammary cancer in rat offspring exposed to carcinogens during pregnancy.
  • Maternal rats were fed high isoflavone milk (HIM), low isoflavone milk (LIM), or water, and then their offspring were exposed to a carcinogen to induce tumors.
  • Despite LIM offspring showing earlier puberty and higher hormone levels, they did not have an increased risk of breast cancer compared to the HIM group, suggesting that dietary components in milk play a crucial role in cancer development.
View Article and Find Full Text PDF