Publications by authors named "Warren Tai"

Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1Ctla4 mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration.

View Article and Find Full Text PDF

This work presents the clinical application of a robust and unique approach for RNA amplification, called a simple method for amplifying RNA targets (SMART), for the detection and identification of subtypes of H1N1 pandemic, H1N1 seasonal, and H3N2 seasonal influenza virus. While all the existing amplification techniques rely on the diffusion of two molecules to complex RNA structures, the SMART achieves fast and efficient amplification via single-molecule diffusion. The SMART utilizes amplifiable single-stranded DNA (ssDNA) probes, which serve as reporter molecules for capturing specific viral RNA (vRNA) sequences and are subsequently separated on a microfluidic chip under zero-flow conditions.

View Article and Find Full Text PDF

The simple method for amplifying RNA targets (SMART) was used to detect K103N, a common HIV-1 reverse transcriptase drug-resistance mutation. Novel amplifiable SMART probes served as reporter molecules for RNA sequences that are captured and separated on a microfluidic platform under zero-flow conditions. Assays were performed both off chip and in a microchip reservoir using a modified version of real-time nucleic acid sequence-based amplification, without the noncyclic phase, and 65°C preheat.

View Article and Find Full Text PDF

This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target.

View Article and Find Full Text PDF