DIRAS3 is an imprinted tumor suppressor gene that is downregulated in 60% of human ovarian cancers. Re-expression of DIRAS3 at physiological levels inhibits proliferation, decreases motility, induces autophagy, and regulates tumor dormancy. Functional inhibition of autophagy with choroquine in dormant xenografts that express DIRAS3 significantly delays tumor regrowth after DIRAS3 levels are reduced, suggesting that autophagy sustains dormant ovarian cancer cells.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (Stat3) transmits signals from growth factors and interleukin-6 family cytokines by binding to their receptors via its Src homology 2 (SH2) domain. This results in phosphorylation of Tyr705, dimerization, translocation to the nucleus, and regulation of transcription of downstream genes. Stat3 is constitutively activated in several human cancers and is a target for anti-cancer drug design.
View Article and Find Full Text PDFHerein we review our progress on the development of phosphopeptide-based prodrugs targeting the SH2 domain of STAT3 to prevent recruitment to cytokine and growth factor receptors, activation, nuclear translocation and transcription of genes involved in cancer. We developed high affinity phosphopeptides (K I = 46-200 nM). Corresponding prodrugs inhibited constitutive and IL-6 induced Tyr705 phosphorylation at 0.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (Stat3) is constitutively activated in a number of human cancers and cancer cell lines. Via its Src homology 2 (SH2) domain, Stat3 is recruited to phosphotyrosine residues on intracellular domains of cytokine and growth factor receptors, whereupon it is phosphorylated on Tyr705, dimerizes, translocates to the nucleus and is reported to participate in the expression of genes related to angiogenesis, metastasis, growth and survival. To block this process, we are developing cell-permeable, phosphatase-stable phosphopeptide mimics, targeted to the SH2 domain of Stat3, that inhibit the phosphorylation of Tyr705 of Stat3 in cultured tumor cells (Mandal et al.
View Article and Find Full Text PDFIntroduction: The c-Jun coactivator, Jun activation-domain binding protein 1 (Jab1) also known as the fifth component of the COP9 signalosome complex (CSN5), is a novel candidate oncogene whose aberrant expression contributes to the progression of breast carcinoma and other human cancers. The mechanism of Jab1 gene expression and its deregulation in cancer cells remains to be identified. We therefore investigated the transcriptional regulatory mechanisms of Jab1 expression in human breast carcinoma cells.
View Article and Find Full Text PDFBackground: Epigenetic therapy has had a significant impact on the management of hematologic malignancies, but its role in the treatment of ovarian cancer remains to be defined. The authors previously demonstrated that treatment of ovarian and breast cancer cells with DNA methyltransferase and histone deacetylase (HDAC) inhibitors can up-regulate the expression of imprinted tumor suppressors. In this study, demethylating agents and HDAC inhibitors were tested for their ability to induce re-expression of tumor suppressor genes, inhibiting growth of ovarian cancer cells in culture and in xenografts.
View Article and Find Full Text PDFSignal transducer and activator of transcription 3 (Stat3), a target for anticancer drug design, is activated by recruitment to phosphotyrosine residues on growth factor and cytokine receptors via its SH2 domain. We report here structure-activity relationship studies on phosphopeptide mimics targeted to the SH2 domain of Stat3. Inclusion of a methyl group on the β-position of the pTyr mimic 4-phosphocinnamide enhanced affinity 2- to 3-fold.
View Article and Find Full Text PDFThe synthesis of prodrugs targeted to the SH2 domain of Stat3 is reported. Using a convergent strategy, the pivaloyloxymethyl phosphonodiester of pentachlorophenyl 4-phosphonodifluoromethylcinnamate, a phosphotyrosine surrogate, was synthesized and used to acylate peptidomimetic fragments that were prepared on solid supports. Two prodrugs described here inhibited the phosphorylation of Stat3 in breast tumor cells.
View Article and Find Full Text PDFBackground: Constitutively activated nuclear factor kappa B (NFkappaB) contributes to the development of cancer by regulating the expression of genes involved in cell survival, metastasis, and angiogenesis. The authors have demonstrated that MEKK3 plays a critical role in cytokine-mediated NFkappaB activation, and that stable expression of MEKK3 in cultured cells leads to increased NFkappaB activity.
Methods: MEKK3 expression in ovarian cancer cells or tumors was assessed by Western blotting and real-time polymerase chain reaction.
ARHI (aplasia Ras homologue member I; also known as DIRAS3) is an imprinted tumour suppressor gene, the expression of which is lost in the majority of breast and ovarian cancers. Unlike its homologues Ras and Rap, ARHI functions as a tumour suppressor. Our previous study showed that ARHI can interact with the transcriptional activator STAT3 (signal transducer and activator of transcription 3) and inhibit its nuclear translocation in human breast- and ovarian-cancer cells.
View Article and Find Full Text PDFThe role of autophagy in oncogenesis remains ambiguous, and mechanisms that induce autophagy and regulate its outcome in human cancers are poorly understood. The maternally imprinted Ras-related tumor suppressor gene aplasia Ras homolog member I (ARHI; also known as DIRAS3) is downregulated in more than 60% of ovarian cancers, and here we show that re-expression of ARHI in multiple human ovarian cancer cell lines induces autophagy by blocking PI3K signaling and inhibiting mammalian target of rapamycin (mTOR), upregulating ATG4, and colocalizing with cleaved microtubule-associated protein light chain 3 (LC3) in autophagosomes. Furthermore, ARHI is required for spontaneous and rapamycin-induced autophagy in normal and malignant cells.
View Article and Find Full Text PDFHomocysteine (Hcy) contributes to atherogenesis and angiostasis by altering the phenotype of arterial endothelial cells (ECs). The present study was aimed at elucidating potential mechanisms by which Hcy can slow EC proliferation and induce EC apoptosis, thereby disrupting endothelial integrity. Given the strong mitogenic and antiapoptotic properties of fibroblast growth factor (FGF)2, we examined whether Hcy can modulate its expression.
View Article and Find Full Text PDFObjective: L5, a circulating electronegative LDL identified in patients with hypercholesterolemia or type 2 diabetes, induces endothelial cell (EC) apoptosis by suppressing fibroblast growth factor (FGF)2 expression. FGF2 plays a pivotal role in endothelial regeneration and compensatory arteriogenesis. It is likely that vasculopathy and poor collateralization in diabetes is a result of FGF2 dysregulation.
View Article and Find Full Text PDFARHI is a maternally imprinted tumor suppressor gene that is expressed in normal breast and ovarian epithelial cells but not in most breast and ovarian cancers. Our earlier studies showed that histone deacetylases (HDACs) in complexes with transcription factors E2F1 and E2F4 play an important role in downregulating ARHI expression in breast cancer cells. To determine which HDAC or HDACs are responsible for repressing ARHI, we cotransfected vectors expressing HDACs 1-11 with an ARHI/luciferase reporter into SKBr3 and MCF-7 breast cancer cells.
View Article and Find Full Text PDFPurpose: ARHI expression is lost or markedly down-regulated in the majority of ovarian cancers. The mechanism by which ARHI is down-regulated in ovarian cancers is still not clear. Our previous reports indicated that ARHI promoter activity was reduced in ovarian cancer cells, due in part to the effects of negative regulatory transcription factor(s).
View Article and Find Full Text PDFA Ras homologue member I (ARHI) is a novel imprinted tumor suppressor gene whose expression is frequently lost in breast and ovarian cancers. This small GTP-binding protein is a member of the Ras superfamily with significant homology to both Ras and Rap. Unlike the Ras oncogene, however, ARHI inhibits tumor cell growth.
View Article and Find Full Text PDFLoss of phosphatase and tensin homolog (PTEN) and amplification of the epidermal growth factor receptor (EGFR) gene contribute to the progression of gliomas. As downstream targets of the PTEN and EGFR signaling pathways, Akt, NFkappaB, and signal transducer and activator of transcription-3 (Stat3) have been shown to play important roles in the control of cell proliferation, apoptosis, and oncogenesis. We examined the activation status of Akt, NFkappaB, and Stat3 in 259 diffuse gliomas using tissue microarrays and immunohistochemistry, and evaluated their association with glioma grade.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2004
Interleukin-1 (IL-1) binds to its type I receptors (IL-1R), which in complex with IL-1R accessory protein (IL-1R AcP) induces various intracellular signaling events. We report here that IL-1 triggers the recruitment of phosphoinositide 3-kinase (PI 3-kinase) to a signaling complex and induces its lipid kinase activity in a biphasic manner. This IL-1-induced complex consists of IL-1R, IL-1R AcP, PI 3-kinase, and the IL-1-receptor-associated kinase (IRAK).
View Article and Find Full Text PDFMany cancers have constitutively activated NFkappaB, the elevation of which contributes to cancer cell resistance to chemotherapeutic agent-induced apoptosis. Although mitogen-activated protein kinase/extracellular-regulated kinase kinase kinase-3 (MEKK3) has been shown to participate in the activation of NFkappaB, its relations to apoptosis and cancer are unclear. In this study, we established cell model systems to examine whether stable expression of MEKK3 could lead to increased NFkappaB activity and confer resistance to apoptosis.
View Article and Find Full Text PDFComparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastoma (GBM), the most advanced stage of glioma. To determine whether IGFBP2 is involved in the proliferative and invasive nature of GBM, we established stable SNB19 GBM cell lines that overexpress IGFBP2. Although there was no marked difference in the cell growth between IGFBP2 overexpressing SNB19(BP2) lines when compared with the control cells, these clones showed significantly increased invasive rates when compared with the parental or vector transfected SNB19 cells.
View Article and Find Full Text PDFOur group recently identified Ras homolog member I (ARHI), a novel maternally imprinted tumor suppressor gene that encodes a 26 kDa GTP-binding protein with high homology to Ras and Rap. Unlike other Ras family members, ARHI exhibits several unusual structural and functional properties. ARHI contains a unique 34 amino-acid extension at the N-terminus, and differs from Ras in residues critical for GTPase activity and in its putative effector domain.
View Article and Find Full Text PDF