Publications by authors named "Warren K. Miller"

Many active pharmaceutical ingredients (APIs) in the pharmaceutical pipeline require bioavailability enhancing formulations due to very low aqueous solubility. Although spray dried dispersions (SDDs) have demonstrated broad utility in enhancing the bioavailability of such APIs by trapping them in a high-energy amorphous form, many new chemical entities (NCEs) are poorly soluble not just in water, but in preferred organic spray drying solvents, e.g.

View Article and Find Full Text PDF

This work aims to develop complimentary analytical tools for lipid formulation selection that offer insights into the mechanisms of in-vitro drug release for solid lipid modified release excipients. Such tools are envisioned to aide and expedite the time consuming process of formulation selection and development. Two pharmaceutically relevant solid lipid excipients are investigated, stearyl alcohol and glyceryl behenate, which are generally known to exhibit faster and slower relative release rates, respectively.

View Article and Find Full Text PDF

The reactions of the trans-Fe(DMeOPrPE)2Cl2 complex (I; DMeOPrPE = 1,2-bis(bis(methoxypropyl)phosphino)ethane) and its derivatives were studied in aqueous and nonaqueous solvents with a particular emphasis on the binding and activation of H2 and N2. The results show there are distinct differences in the reaction pathways between aqueous and nonaqueous solvents. In water, I immediately reacts to form trans-Fe(DMeOPrPE)2(H2O)Cl+.

View Article and Find Full Text PDF

The reactions of the water-soluble chelating phosphines 1,2-bis(bis(hydroxyalkyl)phosphino)ethane (alkyl = n-propyl, DHPrPE; n-butyl, DHBuPE; n-pentyl, DHPePE) with FeCl(2).4H(2)O and FeSO(4).7H(2)O were studied as routes to water-soluble complexes that will bind small molecules, dinitrogen in particular.

View Article and Find Full Text PDF

The syntheses of the water-soluble, chelating phosphines 1,2-bis(bis(hydroxybutyl)phosphino)ethane (1, n = 3; DHBuPE) and 1,2-bis(bis(hydroxypentyl)phosphino)ethane (1, n = 4; DHPePE) are reported. These ligands (and, in general, other 1,2-bis(bis(hydroxyalkyl)phosphino)ethane ligands) can be used to impart water solubility to metal complexes. As examples of this, the [Ni(DHPrPE)(2)Cl]Cl (2), [Rh(DHPrPE)(2)][Cl] (3), and [Ru(DHBuPE)(2)Cl(2)][Cl] (4) complexes were synthesized; they are indeed soluble in water (>0.

View Article and Find Full Text PDF