Publications by authors named "Warren G Bryson"

Tomograms of transverse sections of Merino wool fibers obtained from fleeces differing in fiber curvature were reconstructed from image series collected using a 300kV transmission electron microscope. Trichokeratin intermediate filaments (IFs) from the ortho-, para- and mesocortices were modeled from the tomograms. IFs were predominantly arranged in left-handed concentric helices with the relative angle of IFs increasing progressively from the center to the periphery of orthocortex macrofibrils.

View Article and Find Full Text PDF

Crimp and bulk, important wool fiber properties, are thought to be related to differences in the protein composition of the orthocortex and paracortex. Fiber morphological studies have demonstrated that the paracortex has a higher proportion of matrix and cysteine than the orthocortex. While there is some evidence for the differential expression of genes between these cell types in the follicle, this has not been demonstrated satisfactorily in the mature fiber.

View Article and Find Full Text PDF

Naturally straight and curved human scalp hairs were examined using fluorescence and electron microscopy techniques to determine morphological and ultrastructural features contributing to single fiber curvature. The study excluded cuticle and medulla, which lack known bilateral structural asymmetry and therefore potential to form curved fibers. The cortex contained four classifiable cell types, two of which were always present in much greater abundance than the remaining two types.

View Article and Find Full Text PDF

Genomic studies have shown that there are four abundant type I and type II intermediate filament proteins (IFPs) in wool. When separated using 2D-PAGE, the type I IFPs separated into four clearly defined major rows. The type II IFPs separated into two distinct staggered rows.

View Article and Find Full Text PDF

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) methods have been used to provide high-resolution separation of wool intermediate filament proteins (IFPs). An improved method of extraction was developed based on a previously published method. The improved method for extraction eliminates the use of dialysis and freeze-drying between the extraction and rehydration steps, allowing the extraction and rehydration for the first dimension gel to be achieved in one day.

View Article and Find Full Text PDF

The outermost protein layer of wool cuticle cells is known as the exocuticle a-layer. This layer is a resistant barrier to the degradation of the fibre and, as a result, little is known of its proteinaceous composition. Merino wool fibres were subjected to both proteolytic and chemical digestion and the resulting material was found by transmission electron microscopy to be highly enriched in a-layer.

View Article and Find Full Text PDF

Three different cell types have been identified in the cortex of wool: orthocortex, mesocortex and paracortex. Fine wool fibres, particularly Merino sheep, are noted for their bilateral distribution of orthocortical and paracortical cells, with the latter following the concave side of the crimp wave. Furthermore, studies have indicated that the paracortex has a higher concentration of cysteine than the orthocortex.

View Article and Find Full Text PDF

Photo-oxidative processes occurring in wool can lead to significant photoyellowing of the fiber. In particular, wool that has been chemically bleached photoyellows more rapidly and to a greater degree than untreated wool. Direct identification of the chromophores responsible for such yellow discoloration in irradiated wool has proven to be elusive for many years.

View Article and Find Full Text PDF

The three-dimensional orientation and arrangement of intermediate filaments in Romney wool ortho-, meso-, and paracortical cells has been revealed using single axis high voltage electron tomography. Modelled tomograms confirm that intermediate filaments in orthocortical cells are arranged helically, with the helical angle progressively increasing from the centre to the periphery of macrofibrils. Intermediate filaments in meso- and paracortical cells display parallel arrangements differing mainly in packing density, with the mesocortex packed more tightly than the paracortex.

View Article and Find Full Text PDF

Comparative two-dimensional electrophoretic (2-DE) studies were performed over a time-course to examine the effect of oxidation or alkylation on the separation of wool keratin proteins. The effect of oxidation was followed by treating scoured wool fibres with increasing levels of hydrogen peroxide, ranging from 0-12 g/L, using conditions mimicking the industrial wool bleaching process. Peroxide treatment was found to have only a minor effect on the 2-DE separation of the intermediate filament protein (IFP) class.

View Article and Find Full Text PDF

High sulphur proteins (HSPs) form part of the matrix surrounding the intermediate filaments in the cortical cells of the wool fibre. There are three known families of HSPs, comprising in excess of 40 components and their molecular weights range from 10-30 kDa. Here we report the use of the increased resolving power of isoelectric focusing in the first dimension of two-dimensional electrophoresis and modern gel comparison software to investigate the nature of within- and between-breed variations amongst the proteins of three breeds of sheep: Merino, Romney and Corriedale.

View Article and Find Full Text PDF

The keratin proteins from wool can be divided into two classes: the intermediate filament proteins (IFPs) and the matrix proteins. Using peptide mass spectral fingerprinting it was possible to match spots to the known theoretical sequences of some IFPs in web-based databases, as enzyme digestion generated sufficient numbers of peptides from each spot to achieve this. In contrast, it was more difficult to obtain good matches for some of the lower molecular weight matrix proteins.

View Article and Find Full Text PDF