Objective: In nonalcoholic fatty liver disease (NAFLD), liver fibrosis is the strongest predictor of adverse outcomes. We sought to investigate the relationship between liver fibrosis and cardiac remodeling in participants from the general population using magnetic resonance imaging (MRI), as well as explore potential mechanistic pathways by analyzing circulating cardiovascular biomarkers.
Methods: In this cross-sectional study, we prospectively included participants with type 2 diabetes and individually matched controls from the SCAPIS (Swedish CArdioPulmonary bioImage Study) cohort in Linköping, Sweden.
Purpose: One major risk factor for breast cancer is high mammographic density. It has been estimated that dense breast tissue contributes to ~ 30% of all breast cancer. Prevention targeting dense breast tissue has the potential to improve breast cancer mortality and morbidity.
View Article and Find Full Text PDFBackground: Lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) are morphological features of high-risk atherosclerotic plaques. However, their relationship to circulating lipoproteins is unclear.
Purpose: To study associations between changes in lipoproteins vs.
Inflammation inside Atherosclerotic plaques represents a major pathophysiological process driving plaques towards rupture. Pre-clinical studies suggest a relationship between lipid rich necrotic core, intraplaque hemorrhage and inflammation, not previously explored in patients. Therefore, we designed a pilot study to investigate the feasibility of assessing the relationship between these plaque features in a quantitative manner using PET/MRI.
View Article and Find Full Text PDFBackground And Purpose: Hereditary diffuse leukoencephalopathy with spheroids (HDLS) and multiple sclerosis (MS) are demyelinating and neurodegenerative disorders that can be hard to distinguish clinically and radiologically. HDLS is a rare disorder compared to MS, which has led to occurrent misdiagnosis of HDLS as MS. That is problematic since their prognosis and treatment differ.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2020
Background: MRI can be used to generate fat fraction (FF) and R2* data, which have been previously shown to characterize the plaque compositional features lipid-rich necrotic core (LRNC) and intraplaque hemorrhage (IPH) in the carotid arteries (CAs). Previously, these data were extracted from CA plaques using time-consuming manual analyses.
Purpose: To design and demonstrate a method for segmenting the CA and extracting data describing the composition of the vessel wall.
Objective: Magnetic resonance imaging (MRI) is essential for multiple sclerosis diagnostics but is conventionally not specific to demyelination. Myelin imaging is often hampered by long scanning times, complex postprocessing, or lack of clinical approval. This study aimed to assess the specificity, robustness, and clinical value of Rapid Estimation of Myelin for Diagnostic Imaging, a new myelin imaging technique based on time-efficient simultaneous T /T relaxometry and proton density mapping in multiple sclerosis.
View Article and Find Full Text PDFBackground: Previous methods for the quantification of brain tissue properties by magnetic resonance imaging were mainly based on two-dimensional acquisitions and were thus limited to a relatively low resolution in the slice direction compared to three-dimensional (3D) acquisitions. The 3D-quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS) sequence may allow for simultaneous acquisition of relaxometry parameters in high spatial resolution.
Purpose: To evaluate bias, linearity, and day-to-day repeatability of relaxometry parameters, as well as tissue fraction maps, acquired with 3D-QALAS.
The aim of this study was to investigate structural changes in the brain stem of adolescents with narcolepsy, a disorder characterized by excessive daytime sleepiness, fragmented night-time sleep, and cataplexy. For this purpose, we used quantitative magnetic resonance imaging to obtain R1 and R2 relaxation rates, proton density, and myelin maps in adolescents with narcolepsy (n = 14) and healthy controls (n = 14). We also acquired resting state functional magnetic resonance imaging (fMRI) for brainstem connectivity analysis.
View Article and Find Full Text PDFBackground: Previous quantitative synthetic MRI of the brain has been solely performed in 2D.
Purpose: To evaluate the feasibility of the recently developed sequence 3D-QALAS for brain cortical thickness and volumetric analysis.
Study Type: Reproducibility/repeatability study.
Purpose: Flowing blood sometimes appears bright on synthetic T-weighted images, which could be misdiagnosed as a thrombus. This study aimed to investigate the frequency of hyperintensity within cerebral venous sinuses on synthetic MR images and to evaluate the influence of increasing flow rates on signal intensity using a flow phantom.
Materials And Methods: Imaging data, including synthetic and conventional MRI scans, from 22 patients were retrospectively analyzed.
Background And Purpose: Administration of a gadolinium-based contrast agent is an important diagnostic biomarker for blood-brain barrier damage. In clinical use, detection is based on subjective comparison of native and postgadolinium-based contrast agent T1-weighted images. Quantitative MR imaging studies have suggested a relation between the longitudinal relaxation rate and proton-density in the brain parenchyma, which is disturbed by gadolinium-based contrast agents.
View Article and Find Full Text PDFMagnetization transfer (MT) imaging has been widely used for estimating myelin content in the brain. Recently, two other approaches, namely simultaneous tissue relaxometry of R and R relaxation rates and proton density (SyMRI) and the ratio of T-weighted to T-weighted images (Tw/Tw ratio), were also proposed as methods for measuring myelin. SyMRI and MT imaging have been reported to correlate well with actual myelin by histology.
View Article and Find Full Text PDFBackground: Diffuse myocardial fibrosis is associated with adverse outcomes, although detection and quantification is challenging. Cardiac MR relaxation times mapping represents a promising imaging biomarker for diffuse myocardial fibrosis.
Purpose: To investigate whether relaxation times can detect longitudinal changes in myocardial tissue composition associated with diffuse fibrosis in patients with severe aortic stenosis (AS) before and after aortic valve replacement (AVR).
Objectives: The present study aimed to evaluate if simultaneous temperature-corrected T1, T2, and proton density (PD) 1.5 T post-mortem MR quantification [quantitative post-mortem magnetic resonance imaging (QPMMRI)] is feasible for characterizing and discerning non-pathologic upper abdominal organs (liver, spleen, pancreas, kidney) with regard to varying body temperatures.
Methods: QPMMRI was performed on 80 corpses (25 females, 55 males; mean age 56.
The goal of the present study was to evaluate if quantitative postmortem cardiac 3-T magnetic resonance (QPMCMR) T1 and T2 relaxation times and proton density values of histopathological early acute and chronic myocardial infarction differ to the quantitative values of non-pathologic myocardium and other histopathological age stages of myocardial infarction with regard to varying corpse temperatures. In 60 forensic corpses (25 female, 35 male), a cardiac 3-T MR quantification sequence was performed prior to autopsy and cardiac dissection. Core body temperature was assessed during MR examinations.
View Article and Find Full Text PDFBackground: Olfactory impairment is an early manifestation of Parkinson's disease (PD). Diffusion Tensor Imaging (DTI) and Magnetization Transfer (MT) are two imaging techniques that allow noninvasive detection of microstructural changes in the cerebral white matter.
Objective: To assess white matter alterations associated with olfactory impairment in PD, using a binary imaging approach with DTI and MT.
Conventional magnetic resonance images are usually evaluated using the image signal contrast between tissues and not based on their absolute signal intensities. Quantification of tissue parameters, such as relaxation rates and proton density, would provide an absolute scale; however, these methods have mainly been performed in a research setting. The development of rapid quantification, with scan times in the order of 6 minutes for full head coverage, has provided the prerequisites for clinical use.
View Article and Find Full Text PDFPurpose: To investigate the in-vivo precision and clinical feasibility of 3D-QALAS - a novel method for simultaneous three-dimensional myocardial T1- and T2-mapping.
Methods: Ten healthy subjects and 23 patients with different cardiac pathologies underwent cardiovascular 3T MRI examinations including 3D-QALAS, MOLLI and T2-GraSE acquisitions. Precision was investigated in the healthy subjects between independent scans, between dependent scans and as standard deviation of consecutive scans.
There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution.
View Article and Find Full Text PDFRecently, quantitative MR sequences have started being used in post-mortem imaging. The goal of the present study was to evaluate if early acute and following age stages of myocardial infarction can be detected and discerned by quantitative 1.5T post-mortem cardiac magnetic resonance (PMCMR) based on quantitative T1, T2 and PD values.
View Article and Find Full Text PDFThe aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R1 and R2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls.
View Article and Find Full Text PDF