GABABRs are key membrane proteins that continually adapt the excitability of the nervous system. These G-protein coupled receptors are activated by the brain's premier inhibitory neurotransmitter GABA. They are obligate heterodimers composed of GABA-binding GABABR1 and G-protein-coupling GABABR2 subunits.
View Article and Find Full Text PDFAutophagy and ER stress are most often studied employing a Western blotting approach to the measurement of autophagy by LC3B upregulation and the ER stress sensor signaling proteins PERK (protein kinase R-like endoplasmic reticulum kinase), IRE1, and ATF6 which initiate protein refolding and elongation of the ER until ER homeostasis is returned. If the misfolding of proteins is increased, then ER stress is maintained, and microautophagy of the ER or specifically reticulophagy occurs. However, LC3B, PERK, protein misfolding, and changes in ER mass (reticulophagy) can also be measured in a cell cycle-dependent manner by flow cytometry and the use of antibodies, protein misfolding, and ER tracking fluorescent probes.
View Article and Find Full Text PDFProtective humoral memory forms in secondary lymphoid organs where B cells undergo affinity maturation and differentiation into memory or plasma cells. Here, we provide a comprehensive roadmap of human B cell maturation with single-cell transcriptomics matched with bulk and single-cell antibody repertoires to define gene expression, antibody repertoires, and clonal sharing of B cell states at single-cell resolution, including memory B cell heterogeneity that reflects diverse functional and signaling states. We reconstruct gene expression dynamics during B cell activation to reveal a pre-germinal center state primed to undergo class switch recombination and dissect how antibody class-dependent gene expression in germinal center and memory B cells is linked with a distinct transcriptional wiring with potential to influence their fate and function.
View Article and Find Full Text PDFGABA receptors (GABARs) are profoundly important for controlling neuronal excitability. Spontaneous and familial mutations to these receptors feature prominently in excitability disorders and neurodevelopmental deficits following disruption to GABA-mediated inhibition. Recent genotyping of an individual with severe epilepsy and Williams-Beuren syndrome identified a frameshifting variant in a major GABAR gene, This truncated the α1 subunit between the third and fourth transmembrane domains and introduced 24 new residues forming the mature protein, α1* Cell surface expression of mutant murine GABARs is severely impaired compared with WT, due to retention in the endoplasmic reticulum.
View Article and Find Full Text PDFShikonin induced necroptosis in Jurkat cells were identified flow cytometrically by the up-regulation of RIP3 in live cells and that a proportion of these cells underwent other forms of regulated cell death (RCD) which included parthanatos (< 10%), or cleaved PARP (< 10%) and DNA Damage (> 30%). Live necroptotic cells also possessed functioning mitochondria with hyper-polarized mitochondria membrane potential and generated a fivefold increase in cellular reactive oxygen species (ROS) which was resistant to inhibition by zVAD and necrostatin-1 (Nec-1). After loss of plasma membrane integrity these dead necroptotic cells then showed a higher incidence of parthanatos (> 40%), or cleaved PARP (> 15%) but less DNA Damage (< 15%).
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr enhances viral replication in both macrophages and, to a lesser extent, cycling T cells. Virion-packaged Vpr is released in target cells shortly after entry, suggesting it is required in the early phase of infection. Previously, we described REAF (RNA-associated early-stage antiviral factor; RPRD2), a constitutively expressed protein that potently restricts HIV replication at or during reverse transcription.
View Article and Find Full Text PDFKidney disease prevalence increases with age, with a common feature of the disease being defects in the epithelial tight junctions. Emerging evidence suggests that the desmosomal adhesion protein Desmoglein-3 (Dsg3) functions beyond the desmosomal adhesion and plays a role in regulating the fundamental pathways that govern cell fate decisions in response to environmental chemical and mechanical stresses. In this study, we explored the role of Dsg3 on dome formation, reactive oxygen species (ROS) production and transepithelial electrical resistance (TER) in MDCK cells, a kidney epithelial cell model widely used to study cell differentiation and tight junction formation and integrity.
View Article and Find Full Text PDFThese guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells.
View Article and Find Full Text PDFDesmoglein-3 (Dsg3), the Pemphigus Vulgaris (PV) antigen (PVA), plays an essential role in keratinocyte cell-cell adhesion and regulates various signaling pathways involved in the progression and metastasis of cancer where it is upregulated. We show here that expression of Dsg3 impacts on the expression and function of p53, a key transcription factor governing the responses to cellular stress. Dsg3 depletion increased p53 expression and activity, an effect enhanced by treating cells with UVB, mechanical stress and genotoxic drugs, whilst increased Dsg3 expression resulted in the opposite effects.
View Article and Find Full Text PDFThe term necrosis is commonly applied to cells that have died via a non-specific pathway or mechanism but strictly is the description of the degradation processes involved once the plasma membrane of the cell has lost integrity. The signalling pathways potentially involved in accidental cell death (ACD) or oncosis are under-studied. In this study, the flow cytometric analysis of the intracellular antigens involved in regulated cell death (RCD) revealed the phenotypic nature of cells undergoing oncosis or necrosis.
View Article and Find Full Text PDFCurrently the study of Regulated Cell Death (RCD) processes is limited to the use of lysed cell populations for Western blot analysis of each separate RCD process. We have previously shown that intracellular antigen flow cytometric analysis of RIP3, Caspase-3 and cell viability dye allowed the determination of levels of apoptosis (Caspase-3/RIP3), necroptosis (RIP3/Caspase-3) and RIP1-dependent apoptosis (Caspase-3/RIP3) in a single Jurkat cell population. The addition of more intracellular markers allows the determination of the incidence of parthanatos (PARP), DNA Damage Response (DDR, H2AX), H2AX hyper-activation of PARP (H2AX/PARP) autophagy (LC3B) and ER stress (PERK), thus allowing the identification of 124 sub-populations both within live and dead cell populations.
View Article and Find Full Text PDFThe mechanistic link between ER stress, autophagy, and resultant cell death was investigated by the use of drugs Thapsigargin (Tg) and Chloroquine (CQ) with prior induction and or blockade of autophagy and apoptosis which modulated the ER stress response and resultant form of cell death. All these biological processes can be measured flow cytometrically allowing the determination of the type of cell death, G cell cycle arrest, cell cycle dependent measurement of ER stress transducer PERK, misfolded proteins, reticulophagy, and autophagy marker LC3B. Jurkat cells after Tg or CQ treatment became necrotic and apoptotic, showed G cell cycle arrest, autophagy, and ER stress.
View Article and Find Full Text PDFFlow cytometry was been widely used to measure apoptosis for many decades but the researcher has no definitive way of determining other forms of cell death using this technology. The use of Western Blot technology has numerous drawbacks in that all the cells in the sample whether live, dead or maybe undergoing multiple discrete forms of cell death are analysed as one population. Flow cytometry given that it can analyse different sub-populations of cells within a sample would reveal the expression of cell death markers within these sub-populations rather than just give a single result from the entire population.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disorder of the central nervous system (CNS). Reliable biomarkers are urgently needed for its diagnosis and management, and as clues to its pathogenesis, in which EBV is implicated.
Objective: To measure IgG antibodies against EBV nuclear antigen-1 (EBNA-1) and innate inflammation status in paired serum and cerebrospinal fluid (CSF) samples from untreated relapsing-remitting MS (RRMS) patients.
Uncontrolled hedgehog (HH)/glioma-associated oncogene (GLI) and WNT/β-catenin signaling are important events in the genesis of many cancers including skin cancer and are often implicated in tumor progression, invasion, and metastasis. However, because of the complexity and context dependency of both pathways, little is known about HH and WNT interactions in human carcinogenesis. In the current study, we provide evidence of HH/glioma-associated oncogene family zinc finger 2 (GLI2)-WNT/β-catenin signaling crosstalk in human keratinocytes.
View Article and Find Full Text PDFThe use of flow cytometry to study the autophagic process has recently led to the development of numerous assays measuring various aspects of the autophagic process. These include the detection of the autophagy marker, the microtubule associated protein LC3B, cell cycle analysis of LC3B expression, increase in lysosomal mass, as well as organelle specific autophagy and the measurement of mitochondrial function. We employed a range of autophagy inducing agents to determine the degree of LC3B up-regulation and corresponding cell cycle distribution, increase in lysosomal mass and mitochondrial dysfunction, as well as the relative preference for the specific type of microautophagy or organelle phagy.
View Article and Find Full Text PDFThe protein iASPP (encoded by PPP1R13L) is an evolutionarily conserved p53 inhibitor, the expression of which is often upregulated in human cancers. We have recently shown that iASPP is a crucial regulator of epidermal homeostasis. Here, we report that iASPP also acts as autophagy inhibitor in keratinocytes.
View Article and Find Full Text PDFIn recent years, flow cytometry has been used to detect the presence of autophagy mainly by the fluorescent antibody labeling of the autophagy marker, the microtubule associated protein LC3-II. Here we describe the indirect antibody labeling of LC3-II in cells displaying drug-induced autophagy by the use of rapamycin and chloroquine, as well as cells undergoing serum starvation. Although the mechanism of action of LysoTracker dyes is not fully understood, lysosomal mass increases during the autophagic process to enable the cell to produce autolysosomes.
View Article and Find Full Text PDFBackground: NADPH oxidase-derived reactive oxygen species, such as H2O2, are part of the intestinal innate immune system but may drive carcinogenesis through DNA damage. We sought to identify the predominant enzyme system capable of producing H2O2 in active ulcerative colitis and assess whether it is affected by 5-aminosalicylic acid (5-ASA).
Methods: We studied human mucosal biopsies by expression arrays, quantitative real-time polymerase chain reaction for NADPH oxidase family members, in situ hybridization (DUOX2 and DUOXA2) and immunofluorescence for DUOX, 8-OHdG (DNA damage), and γH2AX (DNA damage response) and sought effects of 5-ASA on ex vivo cultured biopsies and cultured rectal cancer cells.
Cell Death Dis
January 2014
Abnormal Sonic Hedgehog signalling leads to increased transcriptional activation of its downstream effector, glioma 2 (GLI2), which is implicated in the pathogenesis of a variety of human cancers. However, the mechanisms underlying the tumorigenic role of GLI2 remain elusive. We demonstrate that overexpression of GLI2-β isoform, which lacks the N-terminal repressor domain (GLI2ΔN) in human keratinocytes is sufficient to induce numerical and structural chromosomal aberrations, including tetraploidy/aneuploidy and chromosomal translocations.
View Article and Find Full Text PDFCell Death Dis
October 2013
The potential to use Schwann cells (SCs) in neural repair for patients suffering from neurotrauma and neurodegenerative diseases is well recognized. However, significant cell death after transplantation hinders the clinical translation of SC-based therapies. Various factors may contribute to the death of transplanted cells.
View Article and Find Full Text PDFThe flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (<1%) RPMI, and nutrient starvation to induce autophagy in Jurkat T-cell leukemia and K562 erythromyeloid cell lines.
View Article and Find Full Text PDF