Publications by authors named "Warner S Weber"

In this study, the secondary structure of the major ampullate silk from Peucetia viridans (Green Lynx) spiders is characterized by X-ray diffraction and solid-state NMR spectroscopy. From X-ray diffraction measurement, β-sheet nanocrystallites were observed and found to be highly oriented along the fiber axis, with an orientational order, fc≈0.98.

View Article and Find Full Text PDF

Embiopterans produce silken galleries and sheets using exceptionally fine silk fibers in which they live and breed. In this study, we use electron microscopy (EM), Fourier-transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction (WAXD) and solid-state nuclear magnetic resonance (ssNMR) techniques to elucidate the molecular level protein structure of webspinner (embiid) silks. Silks from two species and are studied in this work.

View Article and Find Full Text PDF

Spider silk has exceptional mechanical and biocompatibility properties. The goal of this study was optimization of the mechanical properties of synthetic spider silk thin films made from synthetic forms of MaSp1 and MaSp2, which compose the dragline silk of Nephila clavipes. We increased the mechanical stress of MaSp1 and 2 films solubilized in both HFIP and water by adding glutaraldehyde and then stretching them in an alcohol based stretch bath.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) experiments reveal the structural importance of divalent cation-phosphate complexes in the formation of β-sheet nanocrystals from phosphorylated serine-rich regions within aquatic silk from caddisfly larvae of the species Hesperophyla consimilis. Wide angle XRD data on native caddisfly silk show that the silk contains a significant crystalline component with a repetitive orthorhombic unit cell aligned along the fiber axis with dimensions of 5.9 Å × 23.

View Article and Find Full Text PDF

Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk.

View Article and Find Full Text PDF

Adhesive silks spun by aquatic caddisfly (order Trichoptera) larvae are used to build both intricate protective shelters and food harvesting nets underwater. In this study, we use (13)C and (31)P solid-state NMR and wide angle X-ray diffraction (WAXD) as tools to elucidate molecular protein structure of caddisfly larval silk from the species Hesperophylax consimilis . Caddisfly larval silk is a fibroin protein based biopolymer containing mostly repetitive amino acid motifs.

View Article and Find Full Text PDF