Background: Respiratory effort should be closely monitored in mechanically ventilated ICU patients to avoid both overassistance and underassistance. Surface electromyography of the diaphragm (sEMGdi) offers a continuous and non-invasive modality to assess respiratory effort based on neuromuscular coupling (NMCdi). The sEMGdi derived electrical activity of the diaphragm (sEAdi) is prone to distortion by crosstalk from other muscles including the heart, hindering its widespread use in clinical practice.
View Article and Find Full Text PDFSurface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting.
View Article and Find Full Text PDFBackground: Individualised optimisation of mechanical ventilation (MV) remains cumbersome in modern intensive care medicine. Computerised, model-based support systems could help in tailoring MV settings to the complex interactions between MV and the individual patient's pathophysiology. Therefore, we critically appraised the current literature on computational physiological models (CPMs) for individualised MV in the ICU with a focus on quality, availability, and clinical readiness.
View Article and Find Full Text PDF