Publications by authors named "Warisa Bunmahotama"

The conventional Hill equation model is suitable to fit dose-response data obtained from performing (eco)toxicity assays. Models based on quasi-quantitative structure-activity relationships (QSARs) to estimate the Hill coefficient ( were developed with the aim of predicting the response of the invertebrate species Daphnia magna to exposure to metal-based nanomaterials. Descriptors representing the pristine properties of nanoparticles and media conditions were coded to a quasi-simplified molecular input line entry system and correlated to experimentally derived values of .

View Article and Find Full Text PDF

Adsorption is a common process used to remove pharmaceuticals, personal care products and endocrine disrupting chemicals (PPCPs/EDCs) from water. However, as PPCPs/EDCs cover a wide range of molecules and chemical structures, prediction of the adsorption capacity is very challenging. In this study, a novel model was developed to predict adsorption isotherms of PPCPs/EDCs onto various types of adsorbents using a combination of Polanyi potential theory, molecular connectivity indices (MCIs) and molecular characteristics.

View Article and Find Full Text PDF

A new model is developed to predict the competitive adsorption isotherms of atrazine, methyl tertiary butyl ether (MTBE), 2-methylisoborneol (2-MIB) and 2,4,6-trichlorophenol onto activated carbons (ACs) in natural water. Based on the Polanyi-Dubinin (PD) equation, with the limiting pore volume of adsorbent estimated from the pore size distribution data, and the Ideal adsorbed solution theory - equivalent background compound (IAST-EBC) model approximation, the model takes into account both the properties of ACs and the impact of natural organic matters in water. Only one set of isotherm in deionized water and one set in natural water are needed to obtain the parameters for the prediction of adsorption isotherms onto different ACs in natural water.

View Article and Find Full Text PDF

A new model approach is developed to predict the adsorption isotherms of low-molecular-weight nonpolar organic compounds (LMWNPOCs) onto activated carbons (ACs). The model is based on the Polanyi-Dubinin (PD) equation, with the limiting pore volume of adsorbent estimated from the pore size distribution (PSD) data, and the adsorption affinity of adsorbate described by the molecular connectivity index (MCI). To obtain the MCI parameters, the model was first tested for the adsorption of 34 LMWNPOCs primarily on F400 AC from 3 reports.

View Article and Find Full Text PDF