Publications by authors named "Wariishi H"

A comprehensive analysis to survey heme-binding proteins produced by the white-rot fungus Phanerochaete chrysosporium was achieved using a biotinylated heme-streptavidin beads system. Mitochondrial citrate synthase (PcCS), glyceraldehyde 3-phosphate dehydrogenase (PcGAPDH), and 2-Cys thioredoxin peroxidase (mammalian HBP23 homolog) were identified as putative heme-binding proteins. Among these, PcCS and PcGAPDH were further characterized using heterologously expressed recombinant proteins.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) is a powerful technique to visualize the distributions of biomolecules without any labeling. In MALDI-MSI experiments, the choice of matrix deposition method is important for acquiring favorable MSI data with high sensitivity and high reproducibility. Generally, manual or automated spray-coating and automated sublimation methods are used, but these methods have some drawbacks with respect to detection sensitivity, spatial resolution, and data reproducibility.

View Article and Find Full Text PDF

The activity of a self-sufficient cytochrome P450 enzyme, CYP505D6, from the lignin-degrading basidiomycete was characterized. Recombinant CYP505D6 was produced in and purified. In the presence of NADPH, CYP505D6 used a series of saturated fatty alcohols with C carbon chain lengths as the substrates.

View Article and Find Full Text PDF

Clinical application of the major anticancer drug, cisplatin, is limited by severe side effects, especially acute kidney injury (AKI) caused by nephrotoxicity. The detailed metabolic mechanism is still largely unknown. Here, we used an integrated technique combining mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) to visualize the diverse spatiotemporal metabolic dynamics in the mouse kidney after cisplatin dosing.

View Article and Find Full Text PDF

Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure.

View Article and Find Full Text PDF

Information on spatiotemporal metabolic behavior is indispensable for a precise understanding of physiological changes and responses, including those of ripening processes and wounding stress, in fruit, but such information is still limited. Here, we visualized the spatial distribution of metabolites within tissue sections of tomato (Solanum lycopersicum L.) fruit using a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) technique combined with a matrix sublimation/recrystallization method.

View Article and Find Full Text PDF

In this study, the initial propagation of metabolic perturbation in Escherichia coli was visualized to understand the dynamic characteristics of the metabolic pathways without the association of transcription alterations. E. coli cells were exposed to the sudden relief of glucose starvation, and time-dependent variances in metabolite balances were traced in the second scale.

View Article and Find Full Text PDF

The quality of coffee green beans is generally evaluated by the sensory cupping test, rather than by chemical compound-based criteria. In this study, we examined the relationship between metabolites and cupping scores for 36 varieties of beans, using a nontargeted LC-MS-based metabolic profiling technique. The cupping score was precisely predicted with the metabolic information measured using LC-MS.

View Article and Find Full Text PDF

Green tea extract (GTE) induces apoptosis of cancer cells without adversely affecting normal cells. Several clinical trials reported that GTE was well tolerated and had potential anti-cancer efficacy. Epigallocatechin-3-O-gallate (EGCG) is the primary compound responsible for the anti-cancer effect of GTE; however, the effect of EGCG alone is limited.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualizing the distribution of a wide range of biomolecules within tissue sections. However, methodology for visualizing a bioactive ellagitannin has not yet been established. This paper presents a novel in situ label-free MALDI-MSI technique for visualizing the distribution of strictinin, a bioactive ellagitannin found in green tea, within mammalian kidney after oral dosing.

View Article and Find Full Text PDF

Spatiotemporal information about biomolecules is indispensable for precise pathological analysis, but it remains largely unclear. Here we show a novel analytical platform combing mass spectrometry imaging (MSI) with its complementary technique, liquid chromatography-mass spectrometry (LC-MS), to elucidate more comprehensive metabolic behaviors, with spatiotemporal information, in tissues. Analysis of a rat transient middle cerebral artery occlusion (MCAO) brain tissue after ischemia-reperfusion was performed to characterize the detailed metabolomic response to pathological alterations.

View Article and Find Full Text PDF

In mass spectrometry (MS)-based metabolomics studies, reference-free identification of metabolites is still a challenging issue. Previously, we demonstrated that the elemental composition (EC) of metabolites could be unambiguously determined using isotopic fine structure, observed by ultrahigh resolution MS, which provided the relative isotopic abundance (RIA) of (13)C, (15)N, (18)O, and (34)S. Herein, we evaluated the efficacy of the RIA for determining ECs based on the MS peaks of 20,258 known metabolites.

View Article and Find Full Text PDF

Objectives: Gemcitabine resistance (GR) is one of the critical issues for therapy for pancreatic cancer, but the mechanism still remains unclear. Our aim was to increase the understanding of GR by metabolic profiling approach.

Methods: To establish GR cells, 2 human pancreatic cancer cell lines, SUIT-2 and CAPAN-1, were exposed to increasing concentration of gemcitabine.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set.

View Article and Find Full Text PDF

Although understanding the high-resolution spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmacological effects, there has been no analytical technique that can easily detect the naïve molecular localization in mammalian tissues. We herein present a novel in situ label-free imaging technique for visualizing bioactive small molecules, using a polyphenol. We established a 1,5-diaminonaphthalene (1,5-DAN)-based matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) technique for visualizing epigallocatechin-3-O-gallate (EGCG), the major bioactive green tea polyphenol, within mammalian tissue micro-regions after oral dosing.

View Article and Find Full Text PDF

The maturity of green coffee beans is the most influential determinant of the quality and flavor of the resultant coffee beverage. However, the chemical compounds that can be used to discriminate the maturity of the beans remain uncharacterized. We herein analyzed four distinct stages of maturity (immature, semi-mature, mature and overripe) of nine different varieties of green Coffea arabica beans hand-harvested from a single experimental field in Hawaii.

View Article and Find Full Text PDF

A thorough understanding of the sequence-structure-function relationships of cytochrome P450 (P450) is necessary to better understand the metabolic diversity of living organisms. Significant amounts of pure enzymes are sometimes required for biochemical studies, and their acquisition often relies on the possibility of their heterologous expression. In this study, we performed extensive heterologous expression of fungal P450s in Escherichia coli using 304 P450 isoforms.

View Article and Find Full Text PDF

Tobacco plant was known to be a non-fructan-storing plant. However, we demonstrated that fructo-oligosaccharides (FOSs) were formed in cured tobacco leaf on adding sucrose to the leaf in our previous report (Nagai et al., J.

View Article and Find Full Text PDF

We investigated the effects of the herbicide thiobencarb on the growth, photosynthetic activity, and expression profile of photosynthesis-related proteins in the marine diatom Thalassiosira pseudonana. Growth rate was suppressed by 50% at a thiobencarb concentration of 1.26 mg/L.

View Article and Find Full Text PDF

This study investigated temporal variations in the potential maximum quantum yield of photosystem II (F(v)/F(m) ratio) and growth-phase dependent cellular protein expressions of Chattonella antiqua under laboratory conditions. Despite the culture conditions, significant positive correlations between the F(v)/F(m) ratio and daily growth rate were observed. Threshold F(v)/F(m) ratios associated with positive cell growth were calculated to be >0.

View Article and Find Full Text PDF

Fructo-oligosaccharides (FOSs) and malto-oligosaccharides (MOSs) in cured tobacco leaves ( Nicotiana tabacum ) were detected and quantified using high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS/MS). These oligosaccharides were present in several tobacco materials including flue-cured tobacco, sun/air-cured tobacco, and cut filler of commercially available tobacco products, but were not detected in air-cured tobacco. The changes in these oligosaccharides during storage were also investigated.

View Article and Find Full Text PDF

The application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for pesticide analysis was demonstrated. Fifteen pesticides were chosen as the model pesticides and twenty-six MALDI matrices were screened for the most suitable matrix. Under the optimized conditions, the obtained limits of detections were lower than the maximum residue limit values stated with 12 pesticides out of 15 tested.

View Article and Find Full Text PDF

MS imaging (MSI) is a remarkable new technology that enables us to determine the distribution of biological molecules present in tissue sections by direct ionization and detection. This technique is now widely used for in situ imaging of endogenous or exogenous molecules such as proteins, lipids, drugs and their metabolites, and it is a potential tool for pathological analysis and the investigation of disease mechanisms. MSI is also thought to be a technique that could be used for biomarker discovery with spatial information.

View Article and Find Full Text PDF

A fungal cytochrome P450 monooxygenase (CYP5150A2) from the white-rot basidiomycete Phanerochaete chrysosporium was heterologously expressed in Escherichia coli and purified as an active form. The purified CYP5150A2 was capable of hydroxylating 4-propylbenzoic acid (PBA) with NADPH-dependent cytochrome P450 oxidoreductase (CPR) as the single redox partner; the reaction efficiency was improved by the addition of electron transfer protein cytochrome b5 (Cyt-b5). Furthermore, CYP5150A2 exhibited substantial activity with redox partners Cyt-b5 and NADH-dependent Cyt-b5 reductase (CB5R) even in the absence of CPR.

View Article and Find Full Text PDF

We investigated the cellular responses of the white-rot basidiomycete Phanerochaete chrysosporium against vanillin. Based upon a proteomic survey, it was demonstrated that two flavin-containing monooxygenases (PcFMO1 and PcFMO2) are translationally up-regulated in response to exogenous addition of vanillin. To elucidate their catalytic functions, we cloned cDNAs and heterologously expressed them in Escherichia coli.

View Article and Find Full Text PDF