Publications by authors named "Wareesa Sharif"

Feature selection (FS) is a critical step in many data science-based applications, especially in text classification, as it includes selecting relevant and important features from an original feature set. This process can improve learning accuracy, streamline learning duration, and simplify outcomes. In text classification, there are often many excessive and unrelated features that impact performance of the applied classifiers, and various techniques have been suggested to tackle this problem, categorized as traditional techniques and meta-heuristic (MH) techniques.

View Article and Find Full Text PDF

An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data.

View Article and Find Full Text PDF

Online product recommendation (OPR) systems have gained prominence in the context of e-commerce over the past years. Despite the increased research on OPR use, less attention has been paid to examining how decision and affective assessment of the OPR are contingent upon the product type. This study proposes and examines a recommendation-product congruity proposition based on cognitive fit and schema congruity theories.

View Article and Find Full Text PDF

Question classification is one of the essential tasks for automatic question answering implementation in natural language processing (NLP). Recently, there have been several text-mining issues such as text classification, document categorization, web mining, sentiment analysis, and spam filtering that have been successfully achieved by deep learning approaches. In this study, we illustrated and investigated our work on certain deep learning approaches for question classification tasks in an extremely inflected Turkish language.

View Article and Find Full Text PDF