Publications by authors named "Wardwell-Ozgo J"

The rapid succession of events during development poses an inherent challenge to achieve precise synchronization required for rigorous, quantitative phenotypic and genotypic analyses in multicellular model organisms. Drosophila melanogaster is an indispensable model for studying the development and function of higher order organisms due to extensive genome homology, tractability, and its relatively short lifespan. Presently, nine Nobel prizes serve as a testament to the utility of this elegant model system.

View Article and Find Full Text PDF

The Drosophila Taiman (Tai) protein is homologous to the human steroid-receptor coactivators SRC1-3 and activates transcription in complex with the 20-hydroxyecdysone (20E) receptor (EcR). Tai has roles in intestinal homeostasis, germline maintenance, cell motility, and proliferation through interactions with EcR and the coactivator Yorkie (Yki). Tai also promotes invasion of tumor cells in adjacent organs, but this pro-invasive mechanism is undefined.

View Article and Find Full Text PDF

Glioblastoma (GBM) and lower grade gliomas (LGG) are the most common primary malignant brain tumors and are resistant to current therapies. Genomic analyses reveal that signature genetic lesions in GBM and LGG include copy gain and amplification of chromosome 7, amplification, mutation, and overexpression of receptor tyrosine kinases (RTK) such as EGFR, and activating mutations in components of the PI3K pathway. In , constitutive co-activation of RTK and PI3K signaling in glial progenitor cells recapitulates key features of human gliomas.

View Article and Find Full Text PDF

The Drosophila locus encodes DNA-dependent ATPases of the SWI2/SNF2 class. This class of chromatin remodeler is associated with an array of cellular activities encompassing transcription, replication, repair and recombination. Moreover, was observed initially to maintain a repressive chromatin state via genetic interaction studies with homeotic genes.

View Article and Find Full Text PDF

As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

Background: Currently, there is no in vitro or ex vivo model that can isolate circulating tumor cells (CTCs). Recently, we developed a four-dimensional (4D) lung cancer model that allows for the isolation of CTCs. We postulated that these cells have different properties than parental (2D) cells.

View Article and Find Full Text PDF

Melanoma is a highly lethal malignancy notorious for its aggressive clinical course and eventual resistance to existing therapies. Currently, we possess a limited understanding of the genetic events driving melanoma progression, and much effort is focused on identifying pro-metastatic aberrations or perturbed signaling networks that constitute new therapeutic targets. In this study, we validate and assess the mechanism by which homeobox transcription factor A1 (HOXA1), a pro-invasion oncogene previously identified in a metastasis screen by our group, contributes to melanoma progression.

View Article and Find Full Text PDF