Depletion of mitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease G-like-depleted cells, and this is marked by a decrease in mitochondrial reserve capacity. Neurohormonal stimulation with phenylephrine (PE) did not have an additive effect on the hypertrophic response induced by endo/exonuclease G-like depletion.
View Article and Find Full Text PDFA kinase interacting protein 1 (AKIP1) is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive.
View Article and Find Full Text PDFCardiac adaptation to unremitting physiological stress typically involves hypertrophic growth of cardiomyocytes, a compensatory response that often fails and causes heart disease. Gene array analysis identified AKIP1 (A Kinase Interacting Protein 1) as a hypertrophic gene and we therefore hypothesized a potential role in the hypertrophic response. We show for the first time that both AKIP1 mRNA and protein levels increased in hypertrophic cardiomyocytes under conditions of sustained cardiac stress, including pressure overload and after myocardial infarction and in vitro in phenylephrine (PE) stimulated neonatal rat ventricular cardiomyocytes (NRVCs).
View Article and Find Full Text PDFAims: Although cardiac diseases account for the highest mortality and morbidity rates in Western society, there is still a considerable gap in our knowledge of genes that contribute to cardiac (dys)function. Here we screened for gene expression profiles correlated to heart failure.
Methods And Results: By expression profiling we identified a novel gene, termed DHRS7c, which was significantly down-regulated by adrenergic stimulation and in heart failure models.