The urgent need for solar electricity production is critical for ensuring energy security and mitigating climate change. Achieving the optimal optical bandgap and effective carrier separation, essential for high-efficiency solar cells, remains a significant challenge when utilizing a single material. In this study, we design a BAs/GeC heterostructure using density functional theory.
View Article and Find Full Text PDFThe search for novel intrinsic two-dimensional (2D) magnetic materials is crucial to understand the fundamentals of 2D magnetism and realize next-generation magneto-electric and magneto-optical systems. Using the rigorous framework of spin-polarized density functional theory (SPDFT)-based calculations, this investigation systematically investigates the effects of a stepwise change in the Fe composition () on the structural, electro-magnetic and optical properties of the ordered SrS based single-layer alloys, with encompassing values from 0 to 1. Our comprehensive analysis revealed that the calculated formation energies, cohesive energies, phonon dispersions, molecular dynamics, and elastic constants of both bare SrS and FeS monolayers indicate their thermodynamic, dynamic, thermal, and mechanical stability in hexagonal and square structures, respectively.
View Article and Find Full Text PDF