This study explores the combined potential of severe plastic deformation (SPD) via differential speed rolling (DSR) and plasma electrolytic oxidation (PEO) to enhance the material performance of 6061 Al alloys. To this end, DSR was carried out at a roll-speed-ratio of 1:4 to obtain ~75% total thickness reduction and a final microstructure of <1 µm. The rest of the samples were annealed to obtain various grain sizes of ~1, ~25, and ~55 μm.
View Article and Find Full Text PDFMetal injection molding (MIM) is a representative near-net-shape manufacturing process that fabricates advanced geometrical components for automobile and device industries. As the mechanical performance of an MIM product is affected by green-part characteristics, this work investigated the green part of pure copper processed with MIM using the injection temperature of ~180 °C and injection pressure of ~5 MPa. A computational analysis based on the Moldflow program was proposed to simulate the effectivity of the process by evaluating the confidence of fill, quality prediction, and pressure drop of three distinctive regions in the green part.
View Article and Find Full Text PDFThis investigation studied the effect of reduction sequence during rolling of ferritic stainless steel on texture and anisotropy. A series of thermomechanical processes were performed on the present samples utilizing rolling deformation, with a total height reduction of 83% but with different reduction sequences, 67% + 50% (route A) and 50% + 67% (route B). Microstructural analysis showed that no significant difference was found in terms of the grain morphology between route A and route B.
View Article and Find Full Text PDFMetal injection molding (MIM) is a quick manufacturing method that produces elaborate and complex items accurately and repeatably. The success of MIM is highly impacted by green part characteristics. This work characterized the green part of steel produced using MIM from feedstock with a powder/binder ratio of 93:7.
View Article and Find Full Text PDF