Publications by authors named "Ward D Pettibone"

The impact of tau pathology on sleep microarchitecture features, including slow oscillations, spindles, and their coupling, has been understudied, despite the proposed importance of these electrophysiological features toward learning and memory. Dual orexin receptor antagonists (DORAs) are known to promote sleep, but whether and how they affect sleep microarchitecture in the setting of tauopathy is unknown. In the PS19 mouse model of tauopathy MAPT (microtubule-associated protein tau) P301S (both male and female), young PS19 mice 2-3 months old show a sleep electrophysiology signature with markedly reduced spindle duration and power and elevated slow oscillation (SO) density compared with littermate controls, although there is no significant tau hyperphosphorylation, tangle formation, or neurodegeneration at this age.

View Article and Find Full Text PDF

Sleep spindles have been implicated in motor learning in human subjects, but their occurrence, timing in relation to cortical slow oscillations, and relationship to offline gains in motor learning have not been examined in animal models. In this study, we recorded EEG over bilateral primary motor cortex in conjunction with EMG for 24 h following a period of either baseline handling or following rotarod motor learning to monitor sleep. We measured several biophysical properties of sleep spindles and their temporal coupling with cortical slow oscillations (SO, <1 Hz) and cortical delta waves (1-4 Hz).

View Article and Find Full Text PDF

Offline gains in motor performance after initial motor learning likely depend on sleep, but the molecular mechanisms by which this occurs are understudied. Regulation of mRNA translation via p70 S6 kinase 1 (S6K1) signaling represents one potential mechanism, as protein synthesis is thought to be increased during sleep compared to wake and is necessary for several forms of long-term memory. Using phosphorylation of ribosomal protein S6 (RpS6) as a readout of S6K1 activity, we demonstrate that a period of 10 h of acute sleep disruption impairs both S6K1 signaling and offline gains in motor performance on the rotarod in adult wild type C57/Bl6 mice.

View Article and Find Full Text PDF

With respect to behavior, the term memory "consolidation" has canonically been used to describe increased fidelity during testing to a learned behavior shaped during training. While the sleeping brain appears to certainly aid in consolidation by this definition for a variety of memories, including motor memories, growing evidence suggests that sleep allows for much more flexible use of the information encountered during prior wakefulness. Sleep has been shown to augment the extraction of gist or patterns from wake experience in human subjects, but this has been difficult to recapitulate in animal models owing to the semantic requirements in many such tasks.

View Article and Find Full Text PDF

A fundamental problem in the field of obstructive sleep apnea (OSA) and memory is that it has historically minimized the basic neurobiology of sleep's role in memory. Memory formation has been classically divided into phases of encoding, processing/consolidation, and retrieval. An abundance of evidence suggests that sleep plays a critical role specifically in the processing/consolidation phase, but may do so differentially for memories that were encoded using particular brain circuits.

View Article and Find Full Text PDF