Schizophyllum commune is a mushroom-forming fungus well-known for its ability to degrade lignocellulosic materials and production of schizophyllan, a high added-value product for cosmeceutical, pharmaceutical, and biomaterial industries. Conventionally, schizophyllan is produced by submerged fermentation using glucose as a carbon source. In this work, we demonstrate that alkaline pretreated bagasse can be used by Schizophyllum commune as an alternative carbon source for the production of schizophyllan.
View Article and Find Full Text PDFSchizophyllum commune is a basidiomycete equipped with an efficient cellulolytic enzyme system capable of growth on decaying woods. In this study, production of lignocellulose-degrading enzymes from S. commune mutant G-135 (SC-Cel) on various cellulosic substrates was examined.
View Article and Find Full Text PDFBackground: Efficient hydrolysis of lignocellulosic materials to sugars for conversion to biofuels and chemicals is a key step in biorefinery. Designing an active saccharifying enzyme system with synergy among their components is considered a promising approach.
Results: In this study, a lignocellulose-degrading enzyme system of Chaetomium globosum BCC5776 (CG-Cel) was characterized for its activity and proteomic profiles, and synergism with accessory enzymes.
A cDNA encoding β-mannanase was cloned from Aspergillus niger BCC4525 and expressed in Pichia pastoris KM71. The secreted enzyme hydrolyzed locust bean gum substrate with very high activity (1625 U/mL) and a relatively high k/K (461 mg s mL). The enzyme is thermophilic and thermostable with an optimal temperature of 70 °C and 40% retention of endo-β-1,4-mannanase activity after preincubation at 70 °C.
View Article and Find Full Text PDFBackground: Mannan is a hemicellulose constituent commonly found in plant-derived feed ingredients. The gum-like property of mannan can obstruct digestive enzymes and bile acids, resulting in impaired nutrient utilisation. In this study, β-mannanase production by Aspergillus niger strain BCC4525 was investigated using several agricultural residues under solid state condition.
View Article and Find Full Text PDFPlant-based animal feed contains antinutritive agents, necessitating the addition of digestive enzymes in commercial feeds. Enzyme additives are costly because they are currently produced separately from recombinant sources. The coexpression of digestive enzymes in a single recombinant cell system would thus be advantageous.
View Article and Find Full Text PDFCell-surface expression of phytase allows the enzyme to be expressed and anchored on the cell surface of Pichia pastoris. This avoids tedious downstream processes such as purification and separation involved with extracellular expression. In addition, yeast cells with anchored proteins can be used as a whole-cell biocatalyst with high value added.
View Article and Find Full Text PDFTwo thermostable phytases were identified from Thai isolates of Aspergillus japonicus BCC18313 (TR86) and Aspergillus niger BCC18081 (TR170). Both genes of 1404 bp length, coding for putative phytases of 468 amino acid residues, were cloned and transferred into Pichia pastoris. The recombinant phytases, r-PhyA86 and r-PhyA170, were expressed as active extracellular, glycosylated proteins with activities of 140 and 100 U mL(-1), respectively.
View Article and Find Full Text PDFA fungal strain, BCC2871 (Periconia sp.), was found to produce a thermotolerant beta-glucosidase, BGL I, with high potential for application in biomass conversion. The full-length gene encoding the target enzyme was identified and cloned into Pichia pastoris KM71.
View Article and Find Full Text PDF