The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis.
View Article and Find Full Text PDFUnderstanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) cells display extensive crosstalk with their surrounding environment to regulate tumor growth, immune evasion, and metastasis. Recent advances have attributed many of these interactions to intercellular communication mediated by small extracellular vesicles (sEVs), involving cancer-associated fibroblasts (CAF). To explore the impact of sEVs on monocyte lineage transition as well as the expression of checkpoint receptors and activation markers, peripheral blood monocytes from healthy subjects were exposed to PDAC-derived sEVs.
View Article and Find Full Text PDFMicrobial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure.
View Article and Find Full Text PDFLittle is known of the geospatial architecture of individual cell populations in lung adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial proximities from the tumors. We show that cellular lineages, states, and transcriptomic features geospatially evolve across normal regions to LUADs.
View Article and Find Full Text PDFThe novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells.
View Article and Find Full Text PDFEarly pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene () and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.
View Article and Find Full Text PDFAurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability.
View Article and Find Full Text PDFRecent data from The Cancer Genome Atlas analysis have revealed that Aurora kinase A (AURKA) amplification and overexpression characterize a distinct subset of human tumors across multiple cancer types. Although elevated expression of AURKA has been shown to induce oncogenic phenotypes in cells in vitro, findings from transgenic mouse models of Aurora-A overexpression in mammary glands have been distinct depending on the models generated. In the present study, we report that prolonged overexpression of AURKA transgene in mammary epithelium driven by ovine β-lactoglobulin promoter, activated through multiple pregnancy and lactation cycles, results in the development of mammary adenocarcinomas with alterations in cancer-relevant genes and epithelial-to-mesenchymal transition.
View Article and Find Full Text PDFElevated Aurora kinase-A expression is correlated with abrogation of DNA damage-induced apoptotic response and mitotic spindle assembly checkpoint (SAC) override in human tumor cells. We report that Aurora-A phosphorylation of p73 at serine235 abrogates its transactivation function and causes cytoplasmic sequestration in a complex with the chaperon protein mortalin. Aurora-A phosphorylated p73 also facilitates inactivation of SAC through dissociation of the MAD2-CDC20 complex in cells undergoing mitosis.
View Article and Find Full Text PDFAim: To compare the impact of ErbB2 on cell invasion and proliferation in cholangiocarcinoma (CCA) cell lines.
Methods: Level of endogenous ErbB2 expression in three CCA cell lines, namely HuCCA-1, KKU-100 and KKU-M213, was determined by real-time reverse-transcriptase polymerase chain reaction. Two ErbB2 inhibitory methods, a small molecule ErbB2 kinase inhibitor (AG825) and siRNA, were used to disrupt ErbB2 function in the cell lines.
ErbB2, a metastasis-promoting oncoprotein, is overexpressed in approximately 25% of invasive/metastatic breast cancers, but in 50%-60% of noninvasive ductal carcinomas in situ (DCIS). It has been puzzling how a subset of ErbB2-overexpressing DCIS develops into invasive breast cancer (IBC). We found that co-overexpression of 14-3-3zeta in ErbB2-overexpressing DCIS conferred a higher risk of progression to IBC.
View Article and Find Full Text PDFPurpose: Taxol resistance remains a major obstacle to improve the benefit of breast cancer patients. Here, we studied whether overexpression of ErbB2 may lead to mitotic deregulation in breast cancer cells via up-regulation of survivin that confers Taxol resistance.
Experimental Design: ErbB2-overexpressing and ErbB2-low-expressing breast cancer cell lines were used to compare their mitotic exit rate, survivin expression level, and apoptosis level in response to Taxol.