A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions.
View Article and Find Full Text PDFActinobacillus pleuropneumoniae causes porcine pleuropneumonia, an important disease in the pig industry. Accurate and sensitive diagnostics such as DNA-based diagnostics are essential for preventing or responding to an outbreak. The specificity of DNA-based diagnostics depends on species-specific markers.
View Article and Find Full Text PDFis a Gram-positive bacterial pathogen of pigs and an emerging zoonotic pathogen. It has become increasingly resistant to multiple classes of antibiotics. New drug candidates and knowledge of their targets are needed to combat antibiotic-resistant .
View Article and Find Full Text PDFAlthough flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I, Br, and Cl but not F to form C4a-hydroxyflavin and HOX.
View Article and Find Full Text PDFAntibiotic resistance in Acinetobacter baumannii is a major global health threat. New drugs with novel chemical structures are needed to overcome a myriad of resistance mechanisms in A. baumannii.
View Article and Find Full Text PDFBackground: The current first line drugs for treating uncomplicated malaria are artemisinin (ART) combination therapies. However, parasites resistant to ART and partner drugs are spreading, which threatens malaria control efforts. Rodent malaria species are useful models for understanding antimalarial resistance, in particular genetic variants responsible for cross resistance to different compounds.
View Article and Find Full Text PDFMalaria parasites possess a de novo heme synthetic pathway. Interestingly, this pathway is dispensable during the blood stages of development in mammalian hosts. The assembly of the two most important hemeproteins, cytochromes c and c1, is mediated by cytochrome heme lyase enzymes.
View Article and Find Full Text PDFThe mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds.
View Article and Find Full Text PDFGlutathione plays a central role in maintaining cellular redox homeostasis, and modulations to this status may affect malaria parasite sensitivity to certain types of antimalarials. In this study, we demonstrate that inhibition of glutathione biosynthesis in the Plasmodium berghei ANKA strain through disruption of the γ-glutamylcysteine synthetase (γ-GCS) gene, which encodes the first and rate-limiting enzyme in the glutathione biosynthetic pathway, significantly sensitizes parasites in vivo to pyrimethamine and sulfadoxine, but not to chloroquine, artesunate, or primaquine, compared with control parasites containing the same pyrimethamine-resistant marker cassette. Treatment of mice infected with an antifolate-resistant P.
View Article and Find Full Text PDFLcrF (VirF), a transcription factor in the multiple adaptational response (MAR) family, regulates expression of the Yersinia type III secretion system (T3SS). Yersinia pseudotuberculosis lcrF-null mutants showed attenuated virulence in tissue culture and animal models of infection. Targeting of LcrF offers a novel, antivirulence strategy for preventing Yersinia infection.
View Article and Find Full Text PDFYopE, a type III secreted effector of Yersinia, is a GTPase Activating Protein for Rac1 and RhoA whose catalytic activity is critical for virulence. We found that YopE also inhibited reactive oxygen species (ROS) production and inactivated Rac2. How YopE distinguishes among its targets and which specific targets are critical for Yersinia survival in different tissues are unknown.
View Article and Find Full Text PDFThe measles virus (MV) P gene encodes three proteins: P, an essential polymerase cofactor, and C and V, which have multiple functions including immune evasion. We show here that the MV P protein also contributes to immune evasion, and that tyrosine 110 is required to block nuclear translocation of the signal transducer and activator of transcription factors (STAT) after interferon type I treatment. In particular, MV P inhibits STAT1 phosphorylation.
View Article and Find Full Text PDF