Publications by authors named "Waqaas Rehman"

The meteoric rise of the field of perovskite solar cells has been fueled by the ease with which a wide range of high-quality materials can be fabricated via simple solution processing methods. However, to date, little effort has been devoted to understanding the precursor solutions, and the role of additives such as hydrohalic acids upon film crystallization and final optoelectronic quality. Here, a direct link between the colloids concentration present in the [HC(NH ) ] Cs Pb(Br I ) precursor solution and the nucleation and growth stages of the thin film formation is established.

View Article and Find Full Text PDF

Metal halide perovskite photovoltaic cells could potentially boost the efficiency of commercial silicon photovoltaic modules from ∼20 toward 30% when used in tandem architectures. An optimum perovskite cell optical band gap of ~1.75 electron volts (eV) can be achieved by varying halide composition, but to date, such materials have had poor photostability and thermal stability.

View Article and Find Full Text PDF

The mixed-halide perovskite FAPb(Bry I1-y )3 is attractive for color-tunable and tandem solar cells. Bimolecular and Auger charge-carrier recombination rate constants strongly correlate with the Br content, y, suggesting a link with electronic structure. FAPbBr3 and FAPbI3 exhibit charge-carrier mobilities of 14 and 27 cm(2) V(-1) s(-1) and diffusion lengths exceeding 1 μm, while mobilities across the mixed Br/I system depend on crystalline phase disorder.

View Article and Find Full Text PDF