Publications by authors named "Wanzeng Kong"

Emotion recognition plays an important role in human life and healthcare. The EEG has been extensively researched as an objective indicator of intense emotions. However, current existing methods lack sufficient analysis of shallow and deep EEG features.

View Article and Find Full Text PDF

The electroencephalogram (EEG) signal is being investigated as a more confidential biometric for person identification. Despite recent advancements, a persistent challenge lies in the influence of variations in affective states. Affective states consistently exist during data collection, regardless of the protocol used.

View Article and Find Full Text PDF

In electroencephalogram (EEG) cognitive recognition research, the combined use of artificial neural networks (ANNs) and spiking neural networks (SNNs) plays an important role to realize different categories of recognition tasks. However, most of the existing studies focus on the unidirectional interaction between an ANN and a SNN, which may be overly dependent on the performance of ANNs or SNNs. Inspired by the symbiosis phenomenon in nature, in this study, we propose a general DNA-like Hybrid Symbiosis (DNA-HS) framework, which enables mutual learning between the ANN and the SNN generated by this ANN through parametric genetic algorithm and bidirectional interaction mechanism to enhance the optimization ability of the model parameters, resulting in a significant improvement of the performance of the DNA-HS framework in all aspects.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are promising biometrics owning to their invisibility, adapting to the application scenarios with high-security requirements. However, It is challenging to explore EEG identity features without the interference of device and state differences of the subject across sessions. Existing methods treat training sessions as a single domain, affected by the different data distribution among sessions.

View Article and Find Full Text PDF

The human brain can effectively perform Facial Expression Recognition (FER) with a few samples by utilizing its cognitive ability. However, unlike the human brain, even the well-trained deep neural network is data-dependent and lacks cognitive ability. To tackle this challenge, this paper proposes a novel framework, Brain Machine Generative Adversarial Networks (BM-GAN), which utilizes the concept of brain's cognitive ability to guide a Convolutional Neural Network to generate LIKE-electroencephalograph (EEG) features.

View Article and Find Full Text PDF

Accurate decoding finger motor imagery is essential for fine motor control using EEG signals. However, decoding finger motor imagery is particularly challenging compared with ordinary motor imagery. This paper proposed a novel EEG decoding method of feature-dependent frequency band selection, feature fusion, and ensemble learning (DSFE) for finger motor imagery.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are derived from the central nervous system and inherently difficult to camouflage, leading to the recent popularity of EEG-based emotion recognition. However, due to the non-stationary nature of EEG, inter-subject variabilities become obstacles for recognition models to well adapt to different subjects. In this paper, we propose a novel approach called semi-supervised bipartite graph construction with active EEG sample selection (SBGASS) for cross-subject emotion recognition, which offers two significant advantages.

View Article and Find Full Text PDF

Electroencephalograph (EEG) has been a reliable data source for building brain-computer interface (BCI) systems; however, it is not reasonable to use the feature vector extracted from multiple EEG channels and frequency bands to perform recognition directly due to the two deficiencies. One is that EEG data is weak and non-stationary, which easily causes different EEG samples to have different quality. The other is that different feature dimensions corresponding to different brain regions and frequency bands have different correlations to a certain mental task, which is not sufficiently investigated.

View Article and Find Full Text PDF

Electroencephalography (EEG)-based motor imagery (MI) is one of brain computer interface (BCI) paradigms, which aims to build a direct communication pathway between human brain and external devices by decoding the brain activities. In a traditional way, MI BCI replies on a single brain, which suffers from the limitations, such as low accuracy and weak stability. To alleviate these limitations, multi-brain BCI has emerged based on the integration of multiple individuals' intelligence.

View Article and Find Full Text PDF

Electroencephalogram(EEG) becomes popular in emotion recognition for its capability of selectively reflecting the real emotional states. Existing graph-based methods have made primary progress in representing pairwise spatial relationships, but leaving higher-order relationships among EEG channels and higher-order relationships inside EEG series. Constructing a hypergraph is a general way of representing higher-order relations.

View Article and Find Full Text PDF

Background: A common but easily overlooked affective overlap problem has not been received enough attention in electroencephalogram (EEG)-based emotion recognition research. In real life, affective overlap refers to the current emotional state of human being is sometimes influenced easily by his/her historical mood. In stimulus-evoked EEG collection experiment, due to the short rest interval in consecutive trials, the inner mechanisms of neural responses make subjects cannot switch their emotion state easily and quickly, which might lead to the affective overlap.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are widely used in the field of emotion recognition since it is resistant to camouflage and contains abundant physiological information. However, EEG signals are non-stationary and have low signal-noise-ratio, making it more difficult to decode in comparison with data modalities such as facial expression and text. In this paper, we propose a model termed semi-supervised regression with adaptive graph learning (SRAGL) for cross-session EEG emotion recognition, which has two merits.

View Article and Find Full Text PDF

In recent years, emotion recognition using physiological signals has become a popular research topic. Physiological signal can reflect the real emotional state for individual which is widely applied to emotion recognition. Multimodal signals provide more discriminative information compared with single modal which arose the interest of related researchers.

View Article and Find Full Text PDF

Background And Objective: Extracting cognitive representation and computational representation information simultaneously from electroencephalography (EEG) data and constructing corresponding information interaction models can effectively improve the recognition capability of brain cognitive status. However, due to the huge gap in the interaction between the two types of information, existing studies have yet to consider the advantages of the interaction of both.

Methods: This paper introduces a novel architecture named the bidirectional interaction-based hybrid network (BIHN) for EEG cognitive recognition.

View Article and Find Full Text PDF

Neural network models of machine learning have shown promising prospects for visual tasks, such as facial emotion recognition (FER). However, the generalization of the model trained from a dataset with a few samples is limited. Unlike the machine, the human brain can effectively realize the required information from a few samples to complete the visual tasks.

View Article and Find Full Text PDF

Since Electroencephalogram (EEG) is resistant to camouflage, it has been a reliable data source for objective emotion recognition. EEG is naturally multi-rhythm and multi-channel, based on which we can extract multiple features for further processing. In EEG-based emotion recognition, it is important to investigate whether there exist some common features shared by different emotional states, and the specific features associated with each emotional state.

View Article and Find Full Text PDF

Background: It is crucial to understand the neural feedback mechanisms and the cognitive decision-making of the brain during the processing of rewards. Here, we report the first attempt for a simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) study in a gambling task by utilizing tensor decomposition.

Methods: First, the single-subject EEG data are represented as a third-order spectrogram tensor to extract frequency features.

View Article and Find Full Text PDF

Various relations existing in Electroencephalogram (EEG) data are significant for EEG feature representation. Thus, studies on the graph-based method focus on extracting relevancy between EEG channels. The shortcoming of existing graph studies is that they only consider a single relationship of EEG electrodes, which results an incomprehensive representation of EEG data and relatively low accuracy of emotion recognition.

View Article and Find Full Text PDF

The visual movement illusion (VMI) is a subjective experience. This illusion is produced by watching the subject's motion video. At the same time, VMI evokes awareness of body ownership.

View Article and Find Full Text PDF

Electroencephalogram (EEG)-based tools for brain functional connectivity (FC) analysis and visualization play an important role in evaluating brain cognitive function. However, existing similar FC analysis tools are not only visualized in 2 dimensions (2D) but also are highly prone to cause visual clutter and unable to dynamically reflect brain connectivity changes over time. Therefore, we design and implement an EEG-based FC visualization framework in this study, named EEG-FCV, for brain cognitive state evaluation.

View Article and Find Full Text PDF

Functional corticomuscular coupling (FCMC) between the cerebral motor cortex and muscle activity reflects multi-layer and nonlinear interactions in the sensorimotor system. Considering the inherent multiscale characteristics of physiological signals, we proposed multiscale transfer spectral entropy (MSTSE) and introduced the unidirectionally coupled Hénon maps model to verify the effectiveness of MSTSE. We recorded electroencephalogram (EEG) and surface electromyography (sEMG) in steady-state grip tasks of 29 healthy participants and 27 patients.

View Article and Find Full Text PDF

With the popularity of smartphones and the pervasion of mobile apps, people spend more and more time to interact with a diversity of apps on their smartphones, especially for young population. This raises a question: how people allocate attention to interfaces of apps during using them. To address this question, we, in this study, designed an experiment with two sessions (i.

View Article and Find Full Text PDF

Stroke is the leading cause of disability worldwide. Traditionally, doctors assess stroke rehabilitation assessment, which can be subjective. Therefore, an objective assessment method is required.

View Article and Find Full Text PDF

Human errors are widely considered among the major causes of road accidents. Furthermore, it is estimated that more than 90% of vehicle crashes causing fatal and permanent injuries are directly related to mental tiredness, fatigue, and drowsiness of the drivers. In particular, driving drowsiness is recognized as a crucial aspect in the context of road safety, since drowsy drivers can suddenly lose control of the car.

View Article and Find Full Text PDF

Electroencephalogram(EEG) signals are generated from central nervous system which are difficult to disguise, leading to its popularity in emotion recognition. Recently,semi-supervisedlearning exhibits promisingemotion recognition performance by involving unlabeled EEG data into model training. However, if we first build a graph to characterize the sample similarities and then perform label propagation on this graph, these two steps cannotwell collaborate with each other.

View Article and Find Full Text PDF