Drug resistance is a major barrier in cancer treatment and anticancer drug development. Growing evidence indicates that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in cancer progression, therapy, and drug resistance. Furthermore, ncRNAs have been proven to be promising novel therapeutic targets for cancer treatment.
View Article and Find Full Text PDFHeterogeneity exists inter- and intratumorally, which might lead to different drug responses. Therefore, it is extremely important to clarify the drug response at single-cell resolution. Here, we propose a precise single-cell drug response (scDR) prediction method for single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is characterized by intra-tumoral heterogeneity, and patients are always diagnosed after metastasis. Thus, finding out how to effectively estimate metastatic risk underlying PDAC is necessary. In this study, we proposed scMetR to evaluate the metastatic risk of tumor cells based on single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFBackground: Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated.
View Article and Find Full Text PDF