The construction of silicon-containing molecules has received increasing attention in recent years. Herein, we report the generation of silyl radicals through NHC catalysis under mild reaction conditions. This methodology offers a novel and convenient route to a diverse range of β-silyl ketones with a broad substrate scope and good functional group compatibility.
View Article and Find Full Text PDFHerein, we report visible light-promoted single nickel catalysis for diverse carbon-heteroatom couplings under mild conditions. This mild, general, and robust method to couple diverse nitrogen, oxygen, and sulfur nucleophiles with aryl(heteroaryl)/alkenyl iodides/bromides exhibits a wide functional group tolerance and is applicable to late-stage modification of pharmaceuticals and natural products. On the base of preliminary mechanistic studies, a Ni /Ni cycle via the generation of active Ni complexes that appear from homolysis of Ni -I rather than Ni -aryl bond was tentatively proposed.
View Article and Find Full Text PDFHerein, we report light-promoted photo/hydrogen atom transfer dual catalysis for arylsilylation of alkenes via the radical-radical cross-coupling with diverse hydrosilanes, which provides a simple and efficient method to prepare various organosilicon compounds with a wide range of substrate scope and good functional group tolerance under transition-metal- and chemical-oxidant-free conditions. Furthermore, the arylsilylation of alkenes can also proceed via the possible electron donor-acceptor complex under exogenous photocatalyst-free conditions.
View Article and Find Full Text PDF