Publications by authors named "Wanyan Huang"

Background: Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance.

Methods: This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells.

View Article and Find Full Text PDF

The integration of partial nitrification-anammox (PN/A) into membrane-aerated biofilm reactor (MABR) is a promisingly energy-efficient and high-efficiency technology for nitrogen removal. The inhibition of nitrite oxidizing bacteria (NOB) remains as the most significant challenge for its development. In our investigation, we proposed a novel process to integrate carriers to MABR (CMABR), which combined the carriers enriched with anaerobic ammonium-oxidizing bacteria (AnAOB) and partial nitrifying MABR system.

View Article and Find Full Text PDF

With the rapid advancement of flexible, portable devices, hydrogel electrolytes have gained considerable attention as potential replacements for conventional liquid electrolytes. A hydrogel electrolyte was synthesised by cross-linking acrylic acid (AA), acrylamide (AM), carboxymethyl cellulose (CMC), and zinc sulphate (ZnSO). The formation of hydrogen bonds and chelate interactions between the P(AA-co-AM) polymer, CMC, and ZnSO created a robust network, enhancing the mechanical properties of the hydrogel electrolytes.

View Article and Find Full Text PDF

The proliferation of nitrite oxidizing bacteria (NOB) still remains as a major challenge for nitrogen removal in mainstream wastewater treatment process based on partial nitrification (PN). This study investigated different operational conditions to establish mainstream PN for the fast start-up of membrane aerated biofilm reactor (MABR) systems. Different oxygen controlling strategies were adopted by employing different influent NH-N loads and oxygen supply strategies to inhibit NOB.

View Article and Find Full Text PDF

: To systematically evaluate the efficacy of mesenchymal stem cells (MSCs) for acute kidney injury (AKI) in preclinical studies and to explore the optimal transplantation strategy of MSCs by network meta-analysis with the aim of improving the efficacy of stem cell therapy. : Computer searches of PubMed, Web of Science, Cochrane, Embase, CNKI, Wanfang, VIP, and CBM databases were conducted until 17 August 2022. Literature screening, data extraction and quality evaluation were performed independently by two researchers.

View Article and Find Full Text PDF

Background: In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers.

View Article and Find Full Text PDF

Liquid marbles, as particle-armored droplets, have potential applications in microreactors, biomedicine, controlled release and gas detection. To improve the stability and biocompatibility of marble, biocompatible cellulose acetate particles and 3-allyloxy-2-hydroxy-propyl-cellulose (AHP-cellulose) were used to fabricate robust cellulose-based liquid marbles with excellent stability. Liquid marble was gelled into hydrogel marble via blue-light-irradiated polymerization of AHP-cellulose.

View Article and Find Full Text PDF

In recent years, metallic nanoparticle (NP)-two-dimensional material hybrids have been widely used for photocatalysis and photoreduction. Here, we introduce a femtosecond laser reduction approach that relies on the repetitive ablation of recast layers by usi-ng temporally shaped pulses to achieve the fast fabrication of metallic NP-two-dimensional material hybrids. We selectively deposited silver-reduced graphene oxide (Ag-rGO) hybrids on different substrates under various fabrication conditions.

View Article and Find Full Text PDF

The phenomenon of simultaneous transformation of ammonium and sulfate under the conditions of inoculating ANAMMOX culture has gotten the attention of researchers. However, there are some problems and doubts reported in the related literature. In this study, the characteristics of ammonium and sulfate synchronous transformation were investigated in a CFSTR via inoculation with ANAMMOX culture.

View Article and Find Full Text PDF

A novel type of nitrate removal process was investigated in this study, which coupled nitrate reduction by zero-valent iron(ZVI) with anaerobic ammonia oxidation(AMAMMOX). The zero-valent iron dosage was 71 g·L. The inoculation volume of ANAMMOX granular sludge was 200 mg·L.

View Article and Find Full Text PDF