Spatiotemporally controlled two-photon photodegradation of hydrogels has gained increasing attention for high-precision subtractive tissue engineering. However, conventional photolabile hydrogels often have poor efficiency upon two-photon excitation in the near-infrared (NIR) region and thus require high laser dosage that may compromise cell activity. As a result, high-speed two-photon hydrogel erosion in the presence of cells remains challenging.
View Article and Find Full Text PDFA long-standing challenge in skeletal tissue engineering is to reconstruct a three-dimensionally (3D) interconnected bone cell network in vitro that mimics the native bone microarchitecture. While conventional hydrogels are extensively used in studying bone cell behavior in vitro, current techniques lack the precision to manipulate the complex pericellular environment found in bone. The goal of this study is to guide single bone cells to form a 3D network in vitro via photosensitized two-photon ablation of microchannels in gelatin methacryloyl (GelMA) hydrogels.
View Article and Find Full Text PDFThe field of biomedical design and manufacturing has been rapidly evolving, with implants and grafts featuring complex 3D design constraints and materials distributions. By combining a new coding-based design and modeling approach with high-throughput volumetric printing, a new approach is demonstrated to transform the way complex shapes are designed and fabricated for biomedical applications. Here, an algorithmic voxel-based approach is used that can rapidly generate a large design library of porous structures, auxetic meshes and cylinders, or perfusable constructs.
View Article and Find Full Text PDFOligodendrocytes generate myelin sheaths vital for the formation, health, and function of the central nervous system. Mounting evidence suggests that receptor tyrosine kinases (RTKs) are crucial for oligodendrocyte differentiation and myelination in the CNS. It was recently reported that discoidin domain receptor 1 (Ddr1), a collagen-activated RTK, is expressed in oligodendrocyte lineage.
View Article and Find Full Text PDFAlthough NG2 is known to be selectively expressed in oligodendrocyte precursor cells (OPCs) for many years, its expressional regulation and functional involvement in oligodendrocyte differentiation have remained elusive. Here, we report that the surface-bound NG2 proteoglycan can physically bind to PDGF-AA and enhances PDGF receptor alpha (α) activation of downstream signaling. During differentiation stage, NG2 protein is cleaved by A disintegrin and metalloproteinase with thrombospondin motifs type 4 (), which is highly upregulated in differentiating OPCs but gradually downregulated in mature myelinating oligodendrocytes.
View Article and Find Full Text PDFTomographic volumetric bioprinting (VBP) has recently emerged as a powerful tool for rapid solidification of cell-laden hydrogel constructs within seconds. However, its practical applications in tissue engineering requires a detailed understanding of how different printing parameters (concentration of resins, laser dose) affect cell activity and tissue formation. Herein, we explore a new application of VBP in bone tissue engineering by merging a soft gelatin methacryloyl (GelMA) bioresin (<5 kPa) with 3D endothelial co-culture to generate heterocellular bone-like constructs with enhanced functionality.
View Article and Find Full Text PDFPhotochem Photobiol
September 2019
Designing digital light processing (DLP) 3D printable photosensitive resins with antibacterial properties is especially vital because of their potential applications in various biomedical fields. In this contribution, a thiol-ene-acrylate ternary system with reduced volume shrinkage and fast photopolymerization rate was chosen as the antibacterial 3D printing matrix resin. Two quaternary ammonium salt-type antibacterial agents (QAC and SH-QAC) with different molecular weight were designed and prepared, which can participate in the curing of matrix resin to achieve contact antibacterial effect.
View Article and Find Full Text PDF