Publications by authors named "Wantong Hu"

Animals can continuously learn different tasks to adapt to changing environments and, therefore, have strategies to effectively cope with inter-task interference, including both proactive interference (Pro-I) and retroactive interference (Retro-I). Many biological mechanisms are known to contribute to learning, memory, and forgetting for a single task, however, mechanisms involved only when learning sequential different tasks are relatively poorly understood. Here, we dissect the respective molecular mechanisms of Pro-I and Retro-I between two consecutive associative learning tasks in .

View Article and Find Full Text PDF

Learned behavior can be suppressed by the extinction procedure. Such extinguished memory often returns spontaneously over time, making it difficult to treat diseases such as addiction. However, the biological mechanisms underlying such spontaneous recovery remain unclear.

View Article and Find Full Text PDF

Age-related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability-related AMI remain unknown.

View Article and Find Full Text PDF

Multiple brain regions respond to harmful nociceptive stimuli. However, it remains unclear as to whether behavioral avoidance of such stimuli can be modulated within the same or distinct brain networks. Here, we found subgroups of neurons localized within a well-defined brain region capable of mediating both innate and conditioned nociceptive avoidance in Drosophila.

View Article and Find Full Text PDF

Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM).

View Article and Find Full Text PDF