Iron has been implicated in the pathogenesis of retinal degenerative diseases, including ocular siderosis. However, the mechanisms of iron-induced retinal toxicity are incompletely understood. Previous work shows that intravitreal injection of Fe leads to photoreceptor (PR) oxidative stress, resulting in PR death within 14 days, and cones are more susceptible than rods to iron-induced oxidative damage.
View Article and Find Full Text PDFPurpose: Iron supplementation therapy is used for iron-deficiency anemia but has been associated with macular degeneration in a 43-year-old patient. Iron entry into the neurosensory retina (NSR) can be toxic. It is important to determine conditions under which serum iron might cross the blood retinal barrier (BRB) into the NSR.
View Article and Find Full Text PDFRetinal iron accumulation has been implicated in the pathogenesis of age-related macular degeneration (AMD) and other neurodegenerative diseases. The retina and the brain are protected from the systemic circulation by the blood retinal barrier (BRB) and blood brain barrier (BBB), respectively. Iron levels within the retina and brain need to be tightly regulated to prevent oxidative injury.
View Article and Find Full Text PDFThe liver secretes hepcidin (Hepc) into the bloodstream to reduce blood iron levels. Hepc accomplishes this by triggering degradation of the only known cellular iron exporter ferroportin in the gut, macrophages, and liver. We previously demonstrated that systemic Hepc knockout (HepcKO) mice, which have high serum iron, develop retinal iron overload and degeneration.
View Article and Find Full Text PDFIron is essential for life, while excess iron can be toxic. Iron generates hydroxyl radical, which is the most reactive free radical, causing oxidative stress. Since iron is absorbed through the diet but not excreted from the body, it accumulates with age in tissues, including the retina, consequently leading to age-related toxicity.
View Article and Find Full Text PDFOxidative stress in retinal pigment epithelium (RPE) is considered to be a major contributor to the development and progression of age-related macular degeneration (AMD). Previous investigations have shown that sodium tanshinone IIA sulfonate (STS) can alleviate oxidative stress in haemorrhagic shock-induced organ damage and cigarette smoke-induced chronic obstructive pulmonary disease in mice. However, whether STS has a protective effect in ARPE-19 cells under oxidative stress and its exact mechanisms have not yet been fully elucidated.
View Article and Find Full Text PDFBackgrounds: Age-related macular degeneration is closely related to lipid oxidation, while relationship between OX-LDL and choroidal neovascularization is unclear. Recently, cylindromatosis is proved to regulate angiogenesis. However, its role in CNV progression remained unclear.
View Article and Find Full Text PDFBackground: Salvianolic acid A (Sal A), an active monomer of Salvia miltiorrhiza, is a phenolic carboxylic acid derivative. The present study was performed to investigate the underlying mechanism of the anti-inflammation effect of Sal A, especially focusing on mTOR-KEAP1-Nrf2 and P2X7R-PKR-NLRP3 signaling pathways.
Methods: SD mice were divided into four groups: PBS, oxidized-low density lipoprotein (ox-LDL, 3 mg/kg), and ox-LDL (3 mg/kg) + Sal A (5 mg/kg) and + Sal A (10 mg/ml) groups.