ACS Appl Mater Interfaces
June 2021
The hole density of individual copper sulfide nanocrystals (CuS NCs) is determined from the stoichiometric mismatch () between copper and sulfide atoms. Consequently, the electronic properties of the material vary over a range of . To exploit CuS NCs in devices, assemblies of NCs are typically required.
View Article and Find Full Text PDFBiomineralization of calcium carbonate has interesting characteristics of intricate morphology formation with controlled crystal polymorphs. In particular, modification of calcite morphology with diverse additives has been the focus of many biomimetic and bioinspired studies. The possible role of strontium ions in enhancing the morphology-modifying ability of macromolecules was investigated.
View Article and Find Full Text PDFAs practical interest in stretchable electronics increases for future applications in wearables, healthcare, and robotics, the demand for electrical interconnects with high electrical conductivity, durability, printability, and adhesion is growing. Despite the high electrical conductivity and stretchability of most previous interconnects, they lack stable conductivity against strain and adhesion to stretchable substrates, leading to a limitation for their practical applications. Herein, we propose a stretchable conductive adhesive consisting of silver particles with carbon nanotube as an auxiliary filler in silicone adhesives.
View Article and Find Full Text PDFSolution-gated graphene transistors were developed recently for use in pH sensor applications. The device operation is understood to rely on the capability of hydronium and hydroxide ions in solution to change the electrical properties of graphene. However, hydronium and hydroxide ions are accompanied by other ionic species in a typical acidic or basic solution and, therefore, the roles of these other ionic species must be also considered to fully understand the pH response of such devices.
View Article and Find Full Text PDFBackground: The greater lubricity and resistance to scratching of oxidized zirconium femoral components are expected to result in less polyethylene wear than cobalt-chrome femoral components.
Questions/purposes: We examined polyethylene wear particles in synovial fluid and compared the weight, size (equivalent circle diameter), and shape (aspect ratio) of polyethylene wear particles in knees with an oxidized zirconium femoral component with those in knees with a cobalt-chrome femoral component.
Patients And Methods: One hundred patients received an oxidized zirconium femoral component in one knee and a cobalt-chrome femoral component in the other.