Publications by authors named "Wansheng Ren"

Arginine methylations can regulate important biological processes and affect many cellular activities, and the enzymes that catalyze the methylations are protein arginine methyltransferases (PRMTs). The biological consequences of arginine methylations depend on the methylation states of arginine that are determined by the PRMT's product specificity. Nevertheless, it is still unclear how different PRMTs may generate different methylation states for the target proteins.

View Article and Find Full Text PDF

Background: Botrytis cinerea is a serious plant fungus and strongly affects the yield and quality of crops. The main control strategy is the employment of fungicides. To research for efficient fungicide with novel structure, a series of novel benzimidazole derivatives bearing pyrimidine and thioether moieties were designed and synthesized.

View Article and Find Full Text PDF

With the aim of exploring new benzimidazole derivative with high fungicidal activity, a series of novel 2-(2-(alkylthio)-6-phenylpyrimidin-4-yl)-1H-benzimidazoles were designed and synthesized, and their in vitro fungicidal activities were evaluated. Compounds 5a, 5f, 5g, 5h, 5i and 5l exhibited excellent fungicidal activities against Botrytis cinerea, and 5c, 5f, 5h, 5i and 5l displayed notable fungicidal activities against Sclerotinia sclerotiorum. Among them, compound 5i (R = fluorine, R = benzyl) displayed the best activity towards the two tested fungi.

View Article and Find Full Text PDF

QM/MM molecular dynamics and potential of mean force (PMF) free-energy simulations are performed for wild-type PRMT7 and E172Q, E181Q, and Q329A mutants in this work, and the catalytic mechanism, product specificity, and the role of key residues for the PRMT7 activity are investigated. The main strategies of PRMT7 in reducing the activation barrier for methyl transfer that are found in this study include (1) formation of reactive (near attack) conformations for the substrate Arg, (2) strengthening the active-site interactions at the transition state, and (3) generation of more effective nucleophiles by changing charge distributions on the target Arg through active-site interactions. More importantly, it is shown that it is a combination of these different factors that determines the PRMT7 methylation activity and substrate/product specificity.

View Article and Find Full Text PDF

Methylation of lysine residues in histone proteins is catalyzed by S-adenosylmethionine (SAM)-dependent histone lysine methyltransferases (KMTs), a genuinely important class of epigenetic enzymes of biomedical interest. Here we report synthetic, mass spectrometric, NMR spectroscopic and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics studies on KMT-catalyzed methylation of histone peptides that contain lysine and its sterically demanding analogs. Our synergistic experimental and computational work demonstrates that human KMTs have a capacity to catalyze methylation of slightly bulkier lysine analogs, but lack the activity for analogs that possess larger aromatic side chains.

View Article and Find Full Text PDF

Histone lysine methyltransferases (KMTs) are biomedicinally important class of epigenetic enzymes that catalyse methylation of lysine residues in histones and other proteins. Enzymatic and computational studies on the simplest lysine analogues that possess a modified main chain demonstrate that the lysine's backbone contributes significantly to functional KMT binding and catalysis.

View Article and Find Full Text PDF