Phosphate and phosphonate drugs are vital in building organisms, regulating physiological processes, and exhibiting diverse biological activities, including antiviral, antibacterial, antineoplastic, and enzyme-inhibitory effects. However, their therapeutic potential is limited by the lack of advanced nanoengineering technologies. Herein, a competitive coordination strategy for nanoengineering phosphate/phosphonate drugs is introduced.
View Article and Find Full Text PDFMater Today Bio
February 2024
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy.
View Article and Find Full Text PDFImmunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time, and mono-functional bioactivity. Herein, we construct Fe-Shikonin metal-phenolic networks (FeShik) nanomedicines as immunogenic cell death (ICD) stimulants and multifunctional immunoadjuvants for tumor vaccination.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2023
Diabetes-related chronic wounds characterized by hyperglycemia and weak alkaline milieu provide numerous advantages for bacteria growth and biofilm formation, setting a myriad of stumbling blocks for wound healing. Therefore, reshaping the spatially and temporally pathological wound microenvironment against bacterial infection is critical to rescue stalled healing progress in diabetes-related chronic wounds. Herein, we demonstrate on the room-temperature construction of a glucose oxidase (GOx)-mimicking and peroxidase (POD)-mimicking dual-nanozymes catalytic cascade system upon the partial reduction of Fe to Fe and the deposition of Au nanoparticles, simultaneously.
View Article and Find Full Text PDFNanovaccine-based immunotherapy has been considered as a major pillar to stimulate the host immune system to recognize and eradicate tumor cells as well as establish a long-term immune memory to prevent tumor relapse and metastasis. However, the weak specificity and low cross-presentation of antigens, as well as the immunosuppressive microenvironments of tumor tissues, are still the major obstacles on exerting the therapeutic performance of tumor nanovaccines sufficiently. Herein, we design and construct cytosine guanine dinucleotide (CpG) oligodeoxynucleotide (ODN)-loaded aluminum hydroxyphosphate nanoparticles covered by Fe-Shikonin metal-phenolic networks (MPNs) (Alum-CpG@Fe-Shikonin NPs) as personalized nanovaccines for antitumor immunity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Ferroptosis has been considered as a promising pathway to overcome apoptosis-induced tumor chemoresistance. However, the antitumor efficacy of ferroptosis-inducing agents is still limited because of the complexity and diversity of tumor microenvironments. Herein, we demonstrate a triple ferroptosis amplification strategy for tumor therapy by associating iron-based nanocarriers, ferroptosis molecular drugs, and HO-producing enzymes.
View Article and Find Full Text PDFIntroduction: Patients with cervical spondylosis have a high incidence of difficult airway, and unpredicted difficult intubation may be life-threatening. Traditional predictors and imaging data may suggest a difficult airway, but these data have limited predictive value, with low sensitivity and specificity. Ultrasonography is a non-irradiating, reproducible, inexpensive and simple tool that provides good imaging of the cervical soft tissue for airway assessment.
View Article and Find Full Text PDFBackground: It is frequently reported that neuropathic pain is associated with abnormalities in brain function and structure as well as cognitive deficits. However, the contributing mechanisms have remained elusive.
Objectives: We aimed to investigate the systemic ultrastructural changes of the peripheral nervous system (PNS) and central nervous system (CNS) in rats with trigeminal neuralgia (TN) induced by cobra venom, as well as the effects and mechanisms of electroacupuncture (EA) and pregabalin (PGB) on TN.
Most of the antitumor chemotherapeutic drugs execute the therapeutic performance upon eliciting tumor cell apoptosis, which may cause chemoresistance of tumors. Design of novel drugs to eradicate apoptosis-resistant tumors via non-apoptotic cell death pathways is promising for improving the long-term chemotherapeutic efficacy. Herein, a Fe(III)-Shikonin metal-polyphenol-coordinated supramolecular nanomedicine for combined therapy of tumor via ferroptosis and necroptosis is designed.
View Article and Find Full Text PDFPurpose: It is unclear whether neuropathological structural changes in the peripheral nervous system and central nervous system can occur in the spared nerve injury model. In this study, we investigated the pathological changes in the nervous system in a model of neuropathic pain as well as the effects of electroacupuncture (EA) and pregabalin (PGB) administration as regards pain relief and tissue repair.
Patients And Methods: Forty adult male SD rats were equally and randomly divided into 4 groups: spared nerve injury group (SNI, n = 10), SNI with electroacupuncture group (EA, n = 10), SNI with pregabalin group (PGB, n =10) and sham-operated group (Sham, n=10).
Unlabelled: The authors present the clinical case of a 67-year-old man with severe insomnia for 5 years with an exacerbation about 1 year before consultation. He did not have enough concentration and energy for his daily work and developed depression and anxiety because of his excessive daytime sleepiness. During his insomniac state, a drug treatment provided partial relief, but the effects were not long-lasting.
View Article and Find Full Text PDFBackground: Thalamic pain is a neuropathic pain syndrome that occurs as a result of thalamic damage. It is difficult to develop therapeutic interventions for thalamic pain because its mechanism is unclear. To better understand the pathophysiological basis of thalamic pain, we developed and characterized a new rat model of thalamic pain using a technique of microinjecting cobra venom into the ventral posterolateral nucleus (VPL) of the thalamus.
View Article and Find Full Text PDF