Background And Aims: Decellularized liver matrix (DLM) hold great potential for reconstructing functional hepatic-like tissue (HLT) based on reseeding of hepatocytes or stem cells, but the shortage of liver donors is still an obstacle for potential application. Therefore, an appropriate alternative scaffold is needed to expand the donor pool. In this study, we explored the effectiveness of decellularized spleen matrix (DSM) for culturing of bone marrow mesenchymal stem cells (BMSCs), and promoting differentiation into hepatic-like cells.
View Article and Find Full Text PDFHepatobiliary Pancreat Dis Int
October 2015
Background: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoonosis and immunological rejection. We proposed that the spleen, which procured more extensively than the liver, could be an ideal source of decellularized scaffold for liver regeneration.
View Article and Find Full Text PDFUsing a decellularized liver matrix (DLM) to reengineer liver tissue is a promising therapy for end-stage liver disease. However, the limited supply of donor organs still hampers its potential clinical application, while a xenogenic decellularized matrix may bring a risk of zoonosis and immunological rejection. Therefore, an appropriate alternative scaffold is needed.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
July 2015
Objective: To develop a method for preparing a decellularized scaffold based on human liver tissue.
Methods: A surgical specimen of the left lateral lobe of the liver was obtained from a patients with hepatic hemangioma. The decellularization process was performed by repeated freezing-thawing, sequential perfusion with 0.
Unlabelled: In the classical form of α1-antitrypsin deficiency (ATD), aberrant intracellular accumulation of misfolded mutant α1-antitrypsin Z (ATZ) in hepatocytes causes hepatic damage by a gain-of-function, "proteotoxic" mechanism. Whereas some ATD patients develop severe liver disease (SLD) that necessitates liver transplantation, others with the same genetic defect completely escape this clinical phenotype. We investigated whether induced pluripotent stem cells (iPSCs) from ATD individuals with or without SLD could model these personalized variations in hepatic disease phenotypes.
View Article and Find Full Text PDFBackground And Aims: Using decellularized scaffold to reengineer liver tissue is a promising alternative therapy for end-stage liver diseases. Though the decellularized human liver matrix is the ideal scaffold for reconstruction of the liver theoretically, the shortage of liver donors is still an obstacle for potential clinical application. Therefore, an appropriate alternative scaffold is needed.
View Article and Find Full Text PDFCell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with designed complex micro-architectures. Channels devised by computer-aided design were used to simulate features of blood vessels in native rat liver.
View Article and Find Full Text PDF