J Colloid Interface Sci
December 2024
The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography.
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) are a green resource which can produce photonic crystal films with structural colors in evaporation-induced self-assembly; CNC photonic crystal films present unique structural colors that cannot be matched by other colored materials. Recently, the mechanisms of CNC photonic crystal films with a unique liquid crystal structure were investigated to obtain homogenous, stable, and even flexible films at a large scale. To clarify the mechanism of colorful CNC photonic crystal films, we briefly summarize the recent advances from the correlations among the preparation methods, microstructures, and color properties.
View Article and Find Full Text PDFThis study focused on the morphology regulation of nanocelluloses (NCs) aiming at preparing NCs with the controllable properties. NCs with rod-shaped, spherical, and rod-shaped and spherical composite structures were prepared from waste paper by a green enzymatic hydrolysis. The critical enzyme concentration for the transition of NCs from one morphology to another was explored.
View Article and Find Full Text PDFPolyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones.
View Article and Find Full Text PDFThe surface of plant fibers was modified by silane coupling agents to prepare plant fiber/polylactic acid (PLA) composites, which can improve the dispersion, adhesion, and compatibility between the plant fibers and the PLA matrix. In this work, three silane coupling agents (KH550, KH560, and KH570) with different molecular structures were used to modify the surface of waste corrugated paper fibers (WFs), and dichloromethane was used as the solvent to prepare the WF/PLA composites. The effects of different silane coupling agents on the microstructure, mechanical properties, thermal decomposition, and crystallization properties of the composites were studied.
View Article and Find Full Text PDFAs a kind of biomass resource, waste office paper can be used as a carbon precursor to prepare carbon materials. In this work, carbon microspheres with regular shape, uniform particle size and high carbon content were successfully prepared from waste office paper via a hydrothermal synthesis method with sulfuric acid as the catalyst. The effects of reaction temperature and sulfuric acid dosage on the morphology of the carbon microspheres were studied.
View Article and Find Full Text PDFThe aluminum foam sandwich (AFS), which perfectly combines the excellent merits of an aluminum foam core and face sheet materials, has extensive and reliable applications in many fields, such as aerospace, military equipment, transportation, and so on. Adhesive bonding is one of the most widely used methods to produce AFS due to its general applicability, simple process, and low cost, however, the bonding interface is known as the weak link and may cause a serious accident. To overcome the shortcomings of a bonded AFS interface, short carbon fiber as a reinforcement phase was introduced to epoxy resin to reinforce the interface adhesion strength of AFS.
View Article and Find Full Text PDFEfficient reduction of environmental pollution caused by waste polyethylene terephthalate (PET) and production of carbon nanomaterials are desirable for nanotechnology, printable electronics, composites and environment protection. Here we report a simple top-down micro/nano-fabrication process to prepare fibrous carbon nanomaterial from waste PET bottles. This process is highly efficient, facile, and catalyst-free in preparing fibrous carbon nanomaterial with promising hydrophobic and electrical properties.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFNew approach to recycle office waste paper was purposed in this paper, i.e., cellulose nanocrystal (CNC) was extracted from waste paper and then used CNC as the organic filler to reinforce polyurethane elastomer (PUE) in thermal properties.
View Article and Find Full Text PDFWaste polyethylene terephthalate (PET) has been a core member in plastic polluters due to the great amount consumption in food packaging, soft-drink bottles, fibers and films. It is essential to recycle waste PET and alcoholysis is a significant way to accomplish chemical recycling. In this work, three kinds of dihydric alcohols, including neopentyl glycol (NPG), dipropylene glycol (DPG) and poly(propylene glycol) (PPG), were employed to decompose waste PET with different temperatures, catalysts, and PET.
View Article and Find Full Text PDFFocusing on eco-friendly materials, cellulose nanocrystal (CNC) extracted from office waste paper was used to reinforce waterborne polyurethane (WPU) with varying content by two incorporation routes including blending method by sonication after WPU synthesis (BCNC/WPU) and the alternative in-situ during the WPU synthesis process (CNC/WPU). The results showed that new interaction between CNC and WPU through hydrogen bonds in the interfacial area was formed and CNC reinforced hard segments effectively. However, the interaction in BCNC/WPU was not as stronger as that in CNC/WPU.
View Article and Find Full Text PDFHydrophobic aluminum oxide films (AOFs) are widely used in anti-oxidation and anti-corrosion applications. In preparing AOFs, complex and high temperature conditions are usually necessary. Here, we report aluminum nanowire structures with hydrophobic properties, prepared using a facile sol-gel method by magnetic stirrer and hydrothermal reaction.
View Article and Find Full Text PDFPolyurethane elastomer (PUE) composites were synthesized with a low additive content of waste natural cellulosic fibers from office paper. A new technology combining prepolymer method with physical blending and modification was adopted. The results showed that cellulosic fibers were covalently bonded to polyurethane molecular chains and served as a cross-linking agent making the degree of phase separation decrease.
View Article and Find Full Text PDFThermoplastic polyurethane (TPU) was blended with recycled polyethylene terephthalate (rPET) to prepare rPET/thermoplastic polyurethane (TPU) composites. Meanwhile, multiple-walled carbon nanotubes (MWCNTs) were employed as a reinforcing filler to study the synergistic effect between CNTs and rPET/TPU composites. The effect of CNT content on the morphology and micro-structure of the composites was investigated using a scanning electron microscope (SEM) and X-ray diffraction (XRD).
View Article and Find Full Text PDFAnnually a tremendous amount of office waste paper (OWP) is discarded creating environmental pollution. Therefore, how to make this paper from waste to wealth and use it in new approaches have become a meaningful and challenging work. In this work, OWP being a cellulose rich biomass was employed for the production of cellulose nanocrystals (CNCs) by acid hydrolysis with different acid concentrations but without subjecting OWP to alkali and bleaching treatments.
View Article and Find Full Text PDFWater plays important roles in organic reactions such as polyurethane synthesis, and the aqueous solution environment affects polymer morphology and other properties. This paper focuses on the morphology and surface properties of waterborne polyurethane resulting from the organic reaction in water involving different forms (solid and liquid), temperatures and aqueous solutions. We provide evidence from TEM observations that the appearance of polyurethane nanoparticles in aqueous solutions presents diverse forms, including imperfect spheres, perfect spheres, perfect and homogenous spheres and tubes.
View Article and Find Full Text PDF