A yrlodithiin-derived -like cyclophane (), featuring an adaptive geometry with stimuli-responsiveness, was designed and successfully constructed. The dynamic and foldable dithiin subunit endowed the cyclophane with a compressible cavity which can transform from a hex-nut geometry to a nearly rectangular box upon complexing guests with various sizes and shapes. The resulting pseudorotaxane complexes could be dethreaded via electrochemical oxidation.
View Article and Find Full Text PDFA series of novel hinge-like molecules, namely dipyrrolo-1,4-dithiins (PDs), were prepared and fully characterized by NMR, UV/vis, cyclic voltammogram, ESR, and single crystal X-ray diffraction (SCXRD) analysis. The lateral fusion of pyrroles with 1,4-dithiins has led to not only retained key features of a dithiin, but also enhanced redox-activity with increased susceptibility to radical cations via redox or chemical oxidation. Stabilization of their radicals are observed for the N,N-tert-butyl or N,N-triphenylmethyl PD as evidenced by ESR measurements.
View Article and Find Full Text PDFChem Commun (Camb)
November 2021
An unprecedented bisthianthrene dipyridyl ligand was designed and synthesized for coordination driven self-assembly. The combination of this conformationally dynamic linker with a 90° convergent metal corner exclusively afforded a novel ML truncated square-like metallamacrocycle. The single crystal X-ray structure reveals a belt-shaped geometry with a cavity diameter of 13.
View Article and Find Full Text PDFLeucine aminopeptidase (LAP), one of the important cancer-related biomarkers, is significantly over-expressed in many malignant tumor cells. Developing an effective fluorescent probe for high-specificity and in situ trapping of endogenous LAP in living samples is still challenging. In this project, we report a water-soluble near-infrared (NIR) fluorescent probe (CHMC-M-Leu) for specific monitoring of LAP in vitro and in vivo.
View Article and Find Full Text PDF