Publications by authors named "Wanqian Lv"

A yrlodithiin-derived -like cyclophane (), featuring an adaptive geometry with stimuli-responsiveness, was designed and successfully constructed. The dynamic and foldable dithiin subunit endowed the cyclophane with a compressible cavity which can transform from a hex-nut geometry to a nearly rectangular box upon complexing guests with various sizes and shapes. The resulting pseudorotaxane complexes could be dethreaded via electrochemical oxidation.

View Article and Find Full Text PDF

A series of novel hinge-like molecules, namely dipyrrolo-1,4-dithiins (PDs), were prepared and fully characterized by NMR, UV/vis, cyclic voltammogram, ESR, and single crystal X-ray diffraction (SCXRD) analysis. The lateral fusion of pyrroles with 1,4-dithiins has led to not only retained key features of a dithiin, but also enhanced redox-activity with increased susceptibility to radical cations via redox or chemical oxidation. Stabilization of their radicals are observed for the N,N-tert-butyl or N,N-triphenylmethyl PD as evidenced by ESR measurements.

View Article and Find Full Text PDF

An unprecedented bisthianthrene dipyridyl ligand was designed and synthesized for coordination driven self-assembly. The combination of this conformationally dynamic linker with a 90° convergent metal corner exclusively afforded a novel ML truncated square-like metallamacrocycle. The single crystal X-ray structure reveals a belt-shaped geometry with a cavity diameter of 13.

View Article and Find Full Text PDF

Leucine aminopeptidase (LAP), one of the important cancer-related biomarkers, is significantly over-expressed in many malignant tumor cells. Developing an effective fluorescent probe for high-specificity and in situ trapping of endogenous LAP in living samples is still challenging. In this project, we report a water-soluble near-infrared (NIR) fluorescent probe (CHMC-M-Leu) for specific monitoring of LAP in vitro and in vivo.

View Article and Find Full Text PDF