Publications by authors named "Wanqi Zhou"

Natural polysaccharides possess various biological functions and have become increasingly important as drug candidates for biomedical development. However, the accessibility to multiple-branched and large-sized acidic polysaccharides with well-defined structures and the identification of related active glycan domains remain challenging. Here, we report the precision synthesis of a highly branched acidic pectin polysaccharide up to a 63-mer containing 10 different glycosidic linkages from .

View Article and Find Full Text PDF

The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum.

View Article and Find Full Text PDF

Hydrocephalus is a severe and life-threatening disease associated with the imbalance of CSF dynamics and affects millions globally at any age, including infants. One cause of pathology that is wide-ranging is genetic mutations to post-traumatic injury. The most effective current pharmacological treatments provide only symptomatic relief and do not address the underlying pathology.

View Article and Find Full Text PDF

Buddleja officinalis has been used as a traditional Chinese medicine for years. Although evidence has demonstrated it can enhance liver function, the active material basis remains unknown. We hypothesize polysaccharides from Buddleja officinalis may be the active material against liver disease.

View Article and Find Full Text PDF
Article Synopsis
  • - The flower of Gomphrena globosa (G. globosa) is recognized in traditional Chinese medicine for its potential liver-protective properties, particularly through its polysaccharide components that may combat fatty liver and hepatitis.
  • - Researchers isolated a specific polysaccharide called GGL0.05S1 from G. globosa, which was found to inhibit fat accumulation and oxidative stress in liver cells, showing effectiveness in preventing liver damage in animal models.
  • - The mechanism behind GGL0.05S1's protective effects involves enhancing the antioxidant capacity of the thioredoxin protein, promoting fat oxidation and cellular cleanup processes, while also reducing inflammation through the inhibition of the NLRP3 signaling pathway.
View Article and Find Full Text PDF

Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed.

View Article and Find Full Text PDF

Hydrocephalus can affect brain function and motor ability. Current treatments mostly involve invasive surgeries, with a high risk of postoperative infections and failure. A successful animal model plays a significant role in developing new treatments for hydrocephalus.

View Article and Find Full Text PDF

The present study investigated the relationship between smartphone distraction, academic procrastination, academic anxiety, and time management disposition. A total of 474 college students were recruited to complete a survey comprising measures of smartphone distraction, academic procrastination, academic anxiety, and time management disposition. The hypothesised moderated mediation model was tested using Model 4 and Model 15 of the PROCESS macro for SPSS.

View Article and Find Full Text PDF

The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion.

View Article and Find Full Text PDF

Instead of the canonical Grotthuss mechanism, we show that a knock-on proton transport process is preferred between organic functional groups (e.g., -COOH and -OH) and adjacent water molecules in biological proton channel and synthetic nanopores through comprehensive quantum and classical molecular dynamics simulations.

View Article and Find Full Text PDF

Solid-state nanopores have been extensively explored as single-molecule sensors, bearing the potential for the sequencing of DNA. Although they offer advantages in terms of high mechanical robustness, tunable geometry, and compatibility with existing semiconductor fabrication techniques in comparison with their biological counterparts, efforts to sequence DNA with these nanopores have been hampered by insufficient spatial resolution and high noise in the measured ionic current signal. Here we show that these limitations can be overcome by the use of solid-state nanopores featuring a thin, narrow constriction as the sensing region, inspired by biological protein nanopores that have achieved notable success in DNA sequencing.

View Article and Find Full Text PDF

Introduction: The association between social media use and mental health risks has been widely investigated over the past two decades with many cross-sectional studies reporting that problematic social media use (PSMU) is associated with higher mental health risk such as anxiety and depression. The present study examined the relationship between PSMU severity and mental health risks (depression, anxiety, stress, and loneliness) using a three-wave longitudinal design.

Methods: A total of 685 first-year Chinese undergraduate students (Mean age = 19.

View Article and Find Full Text PDF

Gardenia jasminoides (GJ) is a classic edible medicine in China of which the fruit has been proved to alleviate liver damage. We hypothesized whether polysaccharide in the fruit could have comparable bioactivity. To address this, a novel polysaccharide GJE0.

View Article and Find Full Text PDF

Electro-osmotic flow is the motion of fluid driven by an applied electric field, for which an electric double layer near a charged surface is deemed essential. Here, we find that electro-osmotic flow can occur in electrically neutral nanochannels in the absence of definable electric double layers through extensive molecular dynamics simulations. An applied electric field is shown to cause an intrinsic channel selectivity between cations and anions, by reorienting the hydration shells of these confined ions.

View Article and Find Full Text PDF

CP fandom behaviors or shipping, a growing popular phenomenon among Chinese young adults, refers to the activities of fans who take great satisfaction from the romantic relationships and interactions of their preferred pairings of idols or virtual characters. CP fans are regarded as a special group of fans with unique identities and interaction styles. This grounded theory study was conducted to explore the mechanism of CP fandom behaviors.

View Article and Find Full Text PDF

Subsequently to the publication of the above article, the authors have realized that Fig. 5D on p. 183 was published containing an error; essentially, the images chosen for the data panels representing the Fig.

View Article and Find Full Text PDF

The fruit of is food and medicine, which has been demonstrated to have a significant neuroprotective effect. However, the effective constituent remains unknown. We speculate that the glycopeptide in the extract of the fruit has similar activity.

View Article and Find Full Text PDF

Nanopore techniques offer a low-cost, label-free, and high-throughput platform that could be used in single-molecule biosensing and in particular DNA sequencing. Since 2010, graphene and other two-dimensional (2D) materials have attracted considerable attention as membranes for producing nanopore devices, owing to their subnanometer thickness that can in theory provide the highest possible spatial resolution of detection. Moreover, 2D materials can be electrically conductive, which potentially enables alternative measurement schemes relying on the transverse current across the membrane material itself and thereby extends the technical capability of traditional ionic current-based nanopore devices.

View Article and Find Full Text PDF

The surface of a three-dimensional ice crystal naturally has a quasi-liquid layer (QLL) at temperatures below its bulk melting point, due to a phenomenon called surface premelting. Here, we show that the edges of a two-dimensional (2D) bilayer hexagonal ice adsorbed on solid surfaces undergo premelting as well, resulting in the formation of quasi-liquid bands (QLBs) at the edges. Our extensive molecular dynamics simulations show that the QLB exhibits structure and dynamics indistinguishable from the bilayer liquid phase, acting as a lower-dimensional analog of the QLL on the bulk ice.

View Article and Find Full Text PDF

A water meniscus naturally forms under ambient conditions at the point of contact between a nanoscale tip and an atomically flat substrate. Here, we study the effect of the phase state of this nanoscale meniscus-consisting of coexisting monolayer, bilayer and trilayer phase domains-on the frictional behavior during tip sliding by means of molecular dynamics simulations. While the meniscus experiences a domain-by-domain liquid-to-solid phase transition induced by lateral compression, we observe an evident transition in measured friction curves from continuous sliding to stick-slip and meanwhile a gradual increase in friction forces.

View Article and Find Full Text PDF

Protein nanopores have been widely used as single-molecule sensors for the detection and characterization of biological polymers such as DNA, RNA, and polypeptides. A variety of protein nanopores with various geometries have been exploited for this purpose, which usually exhibit distinct sensing capabilities, but the underlying molecular mechanism remains elusive. Here, we systematically characterize the molecular transport properties of four widely studied protein nanopores, α-hemolysin, MspA, CsgG, and aerolysin, by extensive molecular dynamics simulations.

View Article and Find Full Text PDF

The mechanical properties of black phosphorus (BP) are anisotropic. Correspondingly, the properties of the nanotubes formed by bending the same BP ribbon along different directions are different as well. When bending the ribbon along the [110] direction (i.

View Article and Find Full Text PDF

Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs.

View Article and Find Full Text PDF

While Taxol has been reported to improve the clinical survival of breast cancer patients, subsequently developed drug-resistance of the cancer cells limits its final efficacy and applications. Previous studies suggested that Aurora A is involved in the development of the Taxol-resistance of breast cancer. We established Taxol-resistant breast cancer MCF-7/T cells and xenograft models to explore the role of Aurora A in Taxol resistant ER-positive breast cancer.

View Article and Find Full Text PDF

Quinomycin G (1), a new analogue of echinomycin, together with a new cyclic dipeptide, cyclo-(l-Pro-4-OH-l-Leu) (2), as well as three known antibiotic compounds tirandamycin A (3), tirandamycin B (4) and staurosporine (5), were isolated from Streptomyces sp. LS298 obtained from a marine sponge Gelliodes carnosa. The planar and absolute configurations of compounds 1 and 2 were established by MS, NMR spectral data analysis and Marfey's method.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmuvvjdnlehsvnvfreps0rkjpukgko5q0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once