Publications by authors named "Wanliu Peng"

Hepatocyte transplantation and bioartificial liver (BAL) systems hold significant promise as less invasive alternatives to traditional transplantation, providing crucial temporary support for patients with acute and chronic liver failure. Although human hepatocytes are ideal, their use is limited by ethical concerns and donor availability, leading to the use of porcine hepatocytes in BAL systems due to their functional similarities. Recent advancements in gene-editing technology have improved porcine organ xenotransplantation clinical trials by addressing immune rejection issues.

View Article and Find Full Text PDF

CRISPR/Cas9 technology, combined with somatic cell nuclear transplantation (SCNT), represents the primary approach to generating gene-edited pigs. The inefficiency in acquiring gene-edited nuclear donors is attributed to low editing and delivery efficiency, both closely linked to the selection of CRISPR/Cas9 forms. However, there is currently no direct method to evaluate the efficiency of CRISPR/Cas9 editing in porcine genomes.

View Article and Find Full Text PDF

Gene-edited pigs have become prominent models for studying human disease mechanisms, gene therapy, and xenotransplantation. CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-associated 9 (CRISPR/Cas9) technology is a widely employed tool for generating gene-edited pigs. Nevertheless, delivering CRISPR/Cas9 to pre-implantation embryos has traditionally posed challenges due to its reliance on intricate micromanipulation equipment and specialized techniques, resulting in high costs and time-consuming procedures.

View Article and Find Full Text PDF

Hydrogels based on poly-(2-hydroxyethyl methacrylate) (pHEMA) have been widely used as biomaterials in tissue engineering due to their biocompatibility, hydrophilicity, and low friction coefficient. The terminal sterilization of hydrogels is a critical step in clinical applications. However, regulations and standardization for the sterilization of hydrogels based on pHEMA are still lacking.

View Article and Find Full Text PDF

One of the key steps of using CRISPR/Cas9 to obtain gene-edited cells used in generating gene-edited animals combined with somatic cell nuclear transplantation (SCNT) is to harvest monoclonal cells with genetic modifications. However, primary cells used as nuclear donors always grow slowly and fragile after a series of gene-editing operations. The extracellular matrix (ECM) formulated directly from different organs comprises complex proteins and growth factors that can improve and regulate the cellular functions of primary cells.

View Article and Find Full Text PDF

Aims: This study aims to evaluate ECM-coated micropattern arrays derived from decellularization of native porcine lungs as a novel three-dimensional cell culture platform.

Methods: ECM derived from decellularization of native porcine lungs was exploited to prepare hydrogels. Then, dECM-coated micropattern arrays were fabricated at four different diameters (50, 100, 150 and 200 ​μm) using polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Three-dimensional (3D) culture via micropattern arrays to generate cellular spheroids seems a promising biomimetic system for liver tissue engineering applications, such as drug screening. Recently, organ-derived decellularized extracellular matrix emerges as arguably the most biomimetic bioink. Herein, decellularized liver matrix (DLM)-derived micropattern array chips were developed to fabricate size-controllable and arrangement-orderly HepG2 spheroids for drug screening.

View Article and Find Full Text PDF

Porcine hepatocytes are widely used in bioartificial liver (BAL) systems for the treatment of liver failure, and Chinese Bama minipigs (BMPs) are extensively used for animal experiments in the field of medicine in China. The genome of porcine endogenous retroviruses (PERVs) has not yet been accurately quantified, posing a threat to their clinical application because they act as a source of cells. In this study, we used genome sequence data from BMPs to predict PERV copies and their distribution.

View Article and Find Full Text PDF