Publications by authors named "Wanli W Smith"

Rationale: Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene play an important role in Parkinson's disease (PD) pathogenesis, and downregulation of LRRK2 has become a promising therapy for PD. Here, we developed a synthetic biology strategy for the self-assembly and delivery of small interfering RNAs (siRNAs) of LRRK2 into the substantia nigra via small extracellular vesicles (sEVs) using a genetic circuit (in the form of naked DNA plasmid) to attenuate PD-like phenotypes in mouse model.

Methods: We generated the genetic circuit encoding both a neuron-targeting rabies virus glycoprotein (RVG) tag and a LRRK2 siRNA under the control of a cytomegalovirus (CMV) promoter, and assessed its therapeutic effects using LRRK2 mouse models of PD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease, with sporadic form being the predominant type. Neuroinflammation plays a critical role in accelerating pathogenic processes in AD. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) regulate inflammatory responses and show great promise for treating AD.

View Article and Find Full Text PDF

Mutations in () are the most frequent genetic factors contributing to Parkinson's disease (PD). G2385R- increases the risk for PD susceptibility in the Chinese population. However, the pathological role of G2385R- is not clear.

View Article and Find Full Text PDF

The oxidative-stress-induced impairment of autophagy plays a critical role in the pathogenesis of Parkinson's disease (PD). In this study, we investigated whether the alteration of Nrf2 in astrocytes protected against 6-OHDA (6-hydroxydopamine)- and rotenone-induced PD-like phenotypes, using 6-OHDA-induced rat PD and rotenone-induced Drosophila PD models. In the PD rat model, we found that Nrf2 expression was significantly higher in astrocytes than in neurons.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease with movement disorders including resting tremor, rigidity, bradykinesia and postural instability. Recent studies have identified a new PD associated gene, TMEM230 (transmembrane protein 230). However, the pathological roles of TMEM230 and its variants are not fully understood.

View Article and Find Full Text PDF

Mutations in gene cause autosomal-dominant Parkinson's disease (PD) and contribute to sporadic PD. Common genetic variation in LRRK2 modifies susceptibility to immunological disorders including Crohn's disease and leprosy. Previous studies have reported that LRRK2 is expressed in B lymphocytes and macrophages, suggesting a role for LRRK2 in immunological functions.

View Article and Find Full Text PDF

Expression of synphilin-1 in neurons induces hyperphagia and obesity in a model. However, the molecular pathways underlying synphilin-1-linked obesity remain unclear. Here, models and genetic tools were used to study the synphilin-1-linked pathways in energy balance by combining molecular biology and pharmacological approaches.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease with movement disorders including resting tremor, bradykinesia, rigidity, and postural instability. The key pathological features of PD are selective loss of dopaminergic (DA) neurons in substantial nigra and the presence of Lewy bodies (LBs). Mutations in TMEM230 (transmembrane protein 230) have been recently reported to play a pathological role and contribute to PD pathogenesis.

View Article and Find Full Text PDF

Mutations in transmembrane protein 230 (TMEM230) gene are suggested to be associated with the autosomal dominant Parkinson's disease (PD) with typical movement disorders and Lewy body pathology. However, the normal functions and the pathological roles of TMEM230 are not clear. In this study, we used TMEM230 isoform II constructs including wild-type (WT) and four reported PD-linked mutation constructs (Y92C, R141L, 184Wext*5, and 184PGext*5).

View Article and Find Full Text PDF

A role for the cytoplasmic protein synphilin-1 in regulating energy balance has been demonstrated recently. Expression of synphilin-1 increases ATP levels in cultured cells. However, the mechanism by which synphilin-1 alters cellular energy status is unknown.

View Article and Find Full Text PDF

Parkinson's disease (PD) is one of the most common movement disorders with loss of dopaminergic neurons and the presence of Lewy bodies in certain brain areas. However, it is not clear how Lewy body (inclusion with protein aggregation) formation occurs. Mutations in leucine-rich repeat kinase 2 (LRRK2) can cause a genetic form of PD and contribute to sporadic PD with the typical Lewy body pathology.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease with a heterogeneous etiology that involves genetic and environmental factors or exogenous. Current LRRK2 PD animal models only partly reproduce the characteristics of the disease with very subtle dopaminergic neuron degeneration. We developed a new model of PD that combines a sub-toxic MPTP insult to the G2019S-LRRK2 mutation.

View Article and Find Full Text PDF

Introduction: Vascular calcification (VC) is a complex, regulated process involved in many disease entities. So far, there are no treatments to reverse it. Exploring novel strategies to prevent VC is important and necessary for VC-related disease intervention.

View Article and Find Full Text PDF

Although the pathogenesis of Parkinson's disease (PD) remains unclear, mutations in leucine-rich repeat kinase 2 (Lrrk2) are among the major causes of familial PD. Most of these mutations disrupt Lrrk2 kinase and (or) GTPase domain function, resulting in neuronal degeneration. However, the signal pathways underlying Lrrk2-induced neuronal degeneration are not fully understood.

View Article and Find Full Text PDF

Exendin-4 (EX-4), a glucagon-like peptide-1 (GLP-1) receptor agonist, has been shown to reduce food intake and to increase proopiomelanocortin (POMC) gene expression in the hypothalamus. In this study, we examined the potential neural mechanisms by which these effects occur. Male Sprague Dawley rats were implanted with a cannula in the third ventricle of the brain through which an inhibitor of phosphatidylinositol-3 kinase (PI3K) (wortmannin) was administered, and EX-4 or vehicle was administered via intraperitoneal (IP) injection.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 is a large protein with implications in genetic and sporadic causes of Parkinson's disease. The physiological functions of LRRK2 are largely unknown. In this report, we investigated whether LRRK2 alters neural transport using live-cell imaging techniques and human neuroblastoma SH-SY5Y cells.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinsonism with pleomorphic pathology including deposits of aggregated protein and neuronal degeneration. The pathogenesis of LRRK2-linked Parkinson's disease (PD) is not fully understood. Here, using co-immunoprecipitation, we found that LRRK2 interacted with synphilin-1 (SP1), a cytoplasmic protein that interacts with α-synuclein and has implications in PD pathogenesis.

View Article and Find Full Text PDF

Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined.

View Article and Find Full Text PDF

Leucine-rich repeat kinase-2 (LRRK2), a cytoplasmic protein containing both GTP binding and kinase activities, has emerged as a highly promising drug target for Parkinson's disease (PD). The majority of PD-linked mutations in LRRK2 dysregulate its GTP binding and kinase activities, which may contribute to neurodegeneration. While most known LRRK2 inhibitors are developed to target the kinase domain, we have recently identified the first LRRK2 GTP binding inhibitor, 68, which not only inhibits LRRK2 GTP binding and kinase activities with high potency in vitro, but also reduces neurodegeneration.

View Article and Find Full Text PDF

Recent studies have suggested that synphilin-1, a cytoplasmic protein, is involved in energy homeostasis. Overexpression of synphilin-1 in neurons results in hyperphagia and obesity in animal models. However, the mechanism by which synphilin-1 alters energy homeostasis is unknown.

View Article and Find Full Text PDF

The tree shrew (Tupaia belangeri) diverges from the primate order (Primates) and is classified as a separate taxonomic group of mammals - Scandentia. It has been suggested that the tree shrew can be used as an animal model for studying human diseases; however, the genomic sequence of the tree shrew is largely unidentified. In the present study, we reported the full-length cDNA sequence of the housekeeping gene, β-actin, in the tree shrew.

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat kinase-2 (LRRK2) gene cause autosomal-dominant Parkinson's disease (PD) and contribute to sporadic PD. LRRK2 contains Guanosine-5'-triphosphate (GTP) binding, GTPase and kinase activities that have been implicated in the neuronal degeneration of PD pathogenesis, making LRRK2, a potential drug target. To date, there is no disease-modifying drug to slow the neuronal degeneration of PD and no published LRRK2 GTP domain inhibitor.

View Article and Find Full Text PDF

The tree shrews (Tupaia belangeri) diverged from the primate order (Primates) and are classified as Scandentia, a separate taxonomic group of mammals. The tree shrew has been suggested to use an animal model to study human disease but the genomic sequences of tree shrew is largely unidentified. Here we identified the full-length cDNA sequence of a housekeeping gene, Glyceraldehyde 3-phosphate Dehydrogenase (GAPDH), in tree shrew.

View Article and Find Full Text PDF

Synphilin-1 is a cytoplasmic protein that has been shown to be involved in the control of energy balance. Previously, we reported on the generation of a human synphilin-1 transgenic mouse model (SP1), in which overexpression of human synphilin-1 resulted in hyperphagia and obesity. Here, behavioral measures in SP1 mice were compared with those of their age-matched controls (NTg) at two time points: when there was not yet a group body weight difference ("pre-obese") and when SP1 mice were heavier ("obese").

View Article and Find Full Text PDF